Skip to main content Accessibility help
×
Home

Improvement of mechanical properties of extruded AZX912 magnesium alloy using high-temperature solution treatment

  • Xinsheng Huang (a1), Yasumasa Chino (a1), Hironori Ueda (a2), Masashi Inoue (a2), Futoshi Kido (a3) and Toshiharu Matsumoto (a3)...

Abstract

For achieving flame-retardant AZX912 magnesium alloy with superior mechanical properties, cast ingots were solution-treated at different temperatures of 420–525 °C prior to extrusion at 280 °C. With increasing solution treatment temperature, brittle Al2Ca intermetallic compound changed from a network-like morphology to a spheroidized shape, with an increase in hardness and became unbroken during extrusion. As the solution treatment temperature increased, cracking of Al2Ca particles during tensile deformation tended to be restricted due to hardening and spheroidizing behaviors, and tensile elongation of extruded alloys significantly enhanced from 11.2 to 19.2%. High mechanical strength was maintained with an improvement in ductility when increasing the solution treatment temperature up to 510 °C. The extruded alloy solution-treated at 510 °C exhibited a superior balance between mechanical strength and ductility, with a high ultimate tensile strength of 367 MPa and a good elongation of 16.8%.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: huang-xs@aist.go.jp

Footnotes

Hide All
b)

Present Address: Technical Headquarter Fuji Light Metal Co., Ltd., Tamana, Kumamoto 869-0912, Japan.

Footnotes

References

Hide All
1.Pan, F.S., Yang, M.B., and Chen, X.H.: A review on casting magnesium alloys: Modification of commercial alloys and development of new alloys. J. Mater. Sci. Technol. 32, 1211 (2016).
2.Czerwinski, F.: Controlling the ignition and flammability of magnesium for aerospace applications. Corros. Sci. 86, 1 (2014).
3.Sakamoto, M., Akiyama, S., and Ogi, K.: Suppression of ignition and burning of molten Mg alloys by Ca bearing stable oxide film. J. Mater. Sci. Lett. 16, 1048 (1997).
4.Han, G.S., Chen, D., Chen, G., and Huang, J.H.: Development of non-flammable high strength extruded Mg–Al–Ca–Mn alloys with high Ca/Al ratio. J. Mater. Sci. Technol. 34, 2063 (2018).
5.Akiyama, S., Ueno, H., Sakamoto, M., Hirai, H., and Kitahara, A.: Development of noncombustible magnesium alloys. Mater. Jpn. 39, 72 (2000).
6.Huang, X.S., Chino, Y., Yuasa, M., Ueda, H., Inoue, M., Kido, F., and Matsumoto, T.: Microstructure and mechanical properties of AZX912 magnesium alloy extruded at different temperatures. Mater. Sci. Eng., A 679, 162 (2017).
7.Zhang, Y., Wu, G.H., Liu, W.C., Zhang, L., Pang, S., Wang, Y.D., and Ding, W.J.: Effects of processing parameters and Ca content on microstructure and mechanical properties of squeeze casting AZ91–Ca alloys. Mater. Sci. Eng., A 595, 109 (2014).
8.Zhang, Y., Wu, G.H., Liu, W.C., Zhang, L., Pang, S., and Ding, W.J.: Preparation and rheo-squeeze casting of semi-solid AZ91–2 wt% Ca magnesium alloy by gas bubbling process. J. Mater. Res. 30, 825 (2015).
9.Babout, L., Maire, E., and Fougeres, R.: Damage initiation in model metallic materials: X-ray tomography and modelling. Acta Mater. 52, 2475 (2004).
10.Pineau, A., Benzerga, A.A., and Pardoen, T.: Failure of metals I: Brittle and ductile fracture. Acta Mater. 107, 424 (2016).
11.Saito, N., Suzuki, K., Fukuda, Y., Ito, T., Noda, M., Gonda, Y., and Chino, Y.: Effects of Al concentration and Zn addition on microstructure and mechanical properties of Mg–Al–(Zn)–Ca series magnesium alloy plates. J. Jpn. Inst. Light Met. 66, 246 (2016).
12.Saito, N., Suzuki, K., Noguchi, M., Ito, T., Noda, M., Gonda, Y., and Chino, Y.: Effects of microstructure on plate bending fatigue properties of rolled Mg–6% Al–1% Zn–1% Ca plates. J. Jpn. Inst. Light Met. 67, 625 (2017).
13.Ma, E. and Zhu, T.: Towards strength–ductility synergy through the design of heterogeneous nanostructures in metals. Mater. Today 20, 323 (2017).
14.Wang, M., He, B.B., and Huang, M.X.: Strong and ductile Mg alloys developed by dislocation engineering. J. Mater. Sci. Technol. 35, 394 (2019).
15.Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., and Wang, H.Y.: What is going on in magnesium alloys? J. Mater. Sci. Technol. 34, 245 (2018).
16.Prasad, Y.V.R.K. and Rao, K.P.: Effect of homogenization on the hot deformation behavior of cast AZ31 magnesium alloy. Mater. Des. 30, 3723 (2009).
17.Xie, H., Jia, L., Zhang, J.L., Wang, Z.M., and , Z.L.: Formation of Al2Ca phase in as-extruded X20 magnesium alloy by solution treatment. Rare Met. Mater. Eng. 41, 958 (2012).
18.Ragani, J., Donnadieu, P., Tassin, C., and Blandin, J.J.: High-temperature deformation of the γ-Mg17Al12 complex metallic alloy. Scr. Mater. 65, 253 (2011).
19.Mathur, H.N., Maier-Kiener, V., and Korte-Kerzel, S.: Deformation in the γ-Mg17Al12 phase at 25–278 °C. Acta Mater. 113, 221 (2016).
20.Zhao, M.C., Liu, M., Song, G.L., and Atrens, A.: Influence of homogenization annealing of AZ91 on mechanical properties and corrosion behavior. Adv. Eng. Mater. 10, 93 (2008).
21.Koltygin, A.V., Bazhenov, V.E., Belova, E.A., and Nikitina, A.A.: Development of a magnesium alloy with good casting characteristics on the basis of Mg–Al–Ca–Mn system, having Mg–Al2Ca structure. J. Magnesium Alloys 1, 224 (2013).
22.Hort, N., Huang, Y.D., and Kainer, K.U.: Intermetallics in magnesium alloys. Adv. Eng. Mater. 8, 235 (2006).
23.Ito, T., Yanagihara, S., Noda, M., and Mori, H.: Effect of cast structure and forging conditions on upset forgeability of a flame-resistant magnesium alloys. J. Jpn. Inst. Light Met. 65, 611 (2015).
24.Suzuki, K., Saito, N., Huang, X.S., Nakatsugawa, I., and Chino, Y.: Effects of alloy compositions on ignition temperature of magnesium alloys. J. Jpn. Inst. Light Met. 69, 46 (2019).
25.Li, Z.F., Dong, J., Zeng, X.Q., Lu, C., and Ding, W.J.: Influence of Mg17Al12 intermetallic compounds on the hot extruded microstructures and mechanical properties of Mg–9Al–1Zn alloy. Mater. Sci. Eng., A 466, 134 (2007).
26.Zhang, L., Deng, K.K., Nie, K.B., Xu, F.J., Su, K., and Lian, W.: Microstructures and mechanical properties of Mg–Al–Ca alloys affected by Ca/Al ratio. Mater. Sci. Eng., A 636, 279 (2015).
27.Zubair, M., Sandlöbes, S., Wollenweber, M.A., Kusche, C.F., Hildebrandt, W., Broeckmann, C., and Korte-Kerzel, S.: On the role of Laves phases on the mechanical properties of Mg–Al–Ca alloys. Mater. Sci. Eng., A 756, 272 (2019).
28.Fukuchi, M. and Watanabe, K.: Temperature and composition dependence of hardness, resistivity and thermoelectric power of the γ-phase in the Al–Mg system. J. Japan Inst. Met. Mater. 39, 493 (1975).
29.Chang, Y.A., Pike, L.M., Liu, C.T., Bilbrey, A.R., and Stone, D.S.: Correlation of the hardness and vacancy concentration in FeAl. Intermetallics 1, 107 (1993).
30.Chen, K.C., Allen, S.M., and Livingston, J.D.: Factors affecting the room-temperature mechanical properties of TiCr2-base Laves phase alloys. Mater. Sci. Eng., A 242, 162 (1998).
31.Chen, K.C., Chu, F., Kotula, P.G., and Thoma, D.: HfCo2 Laves phase intermetallics—Part II: Elastic and mechanical properties as a function of composition. Intermetallics 9, 785 (2001).
32.Liu, Y., Wang, N.N., Wang, J.W., Ma, B.C., and Zhao, D.Q.: Investigation of the crystallographic structure and orientations of the Al2Ca phase in a Mg–Al–Ca–Mn alloy. Mater. Charact. 142, 377 (2018).
33.Fredriksson, H. and Akerlind, U.: Solidification and Crystallization Processing in Metals and Alloys, 1st ed. (John Wiley & Sons, Hoboken, 2012); p. 42.
34.Li, C.D., Wang, X.J., Liu, W.Q., Wu, K., Shi, H.L., Ding, C., Hu, X.S., and Zheng, M.Y.: Microstructure and strengthening mechanism of carbon nanotubes reinforced magnesium matrix composite. Mater. Sci. Eng., A 597, 264 (2014).
35.Xu, S.W., Kamado, S., and Honma, T.: Effect of homogenization on microstructures and mechanical properties of hot compressed Mg–9Al–1Zn alloy. Mater. Sci. Eng., A 528, 2385 (2011).
36.Watanabe, H., Yamaguchi, M., Takigawa, Y., and Higashi, K.: Mechanical properties of Mg–Al–Ca alloy processed by hot extrusion. Mater. Sci. Eng., A 454–455, 384 (2007).
37.Masaki, K., Ochi, Y., Kakiuchi, T., Kurata, K., Hirasawa, T., Matsumura, T., Takigawa, Y., and Higashi, K.: High cycle fatigue property of extruded non-combustible Mg alloy AMCa602. Mater. Trans. 49, 1148 (2008).
38.Hristov, V.S. and Yoshida, K.: Effects of chemical composition on drawability and mechanical properties of magnesium alloy wires. Proc. Manuf. 15, 341 (2018).
39.Li, Z.T., Qiao, X.G., Xu, C., Kamado, S., Zheng, M.Y., and Luo, A.A.: Ultrahigh strength Mg–Al–Ca–Mn extrusion alloys with various aluminum contents. J. Alloys Compd. 792, 130 (2019).

Keywords

Improvement of mechanical properties of extruded AZX912 magnesium alloy using high-temperature solution treatment

  • Xinsheng Huang (a1), Yasumasa Chino (a1), Hironori Ueda (a2), Masashi Inoue (a2), Futoshi Kido (a3) and Toshiharu Matsumoto (a3)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed