Hostname: page-component-7bb8b95d7b-lvwk9 Total loading time: 0 Render date: 2024-09-18T16:03:40.836Z Has data issue: false hasContentIssue false

Improvement in the open-circuit voltage of an organic photovoltaic device through selection of a suitable and low-lying highest occupied molecular orbital for the electron donor layer

Published online by Cambridge University Press:  22 May 2013

Shun-Wei Liu*
Affiliation:
Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, Republic of China
Chun-Feng Lin
Affiliation:
Department of Electronic Engineering, Ming Chi University of Technology, New Taipei City 24301, Taiwan, Republic of China
*
a)Address all correspondence to this author. e-mail: swliu@mail.mcut.edu.tw
Get access

Abstract

A high open-circuit voltage (VOC) of an organic photovoltaic device (OPV) has been realized using an ultrathin electron donor layer, 2,3-Bis(2-(diphenylamino)-9,9′- spirobifluorene-7-yl)fumaronitrile (PhSPFN), which exhibits the most suitable and low-lying highest occupied molecular orbital (HOMO) to align between the anode and donor energy levels. The planar heterojunction OPV, represented as indium tin oxide electrode/PhSPFN/fullerene C60/bathocuproine/aluminum electrode shows high performance with a VOC of 0.91 V, short current density of 3.9 mA/cm2, fill factor of 56% and power conversion efficiency of 2% under an air-mass of 1.5 global illumination at 1 sun. In addition, the effect of the VOC change is discussed in terms of various donor materials. The VOC turns out to be restricted to the energetic alignment between the work function of the anode and the HOMO level, indicating that the optimization of VOC requires energetically good contact between the anode and organic materials.

Type
Articles
Copyright
Copyright © Materials Research Society 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Dennler, G. and Sariciftci, N.S.: Flexible conjugated polymer-based plastic solar cells: From basics to applications. Proc. IEEE. 93, 1429 (2005).CrossRefGoogle Scholar
Myers, J.D. and Xue, J.: Organic semiconductors and their applications in photovoltaic devices. Polym. Rev. 52, 1 (2012).CrossRefGoogle Scholar
Tang, C.W.: Two-layer organic photovoltaic cell. Appl. Phys. Lett. 48, 183 (1986).CrossRefGoogle Scholar
Peumans, P. and Forrest, S.R.: Very-high-efficiency double-heterostructure copper phthalocyanine/C60 photovoltaic cells. Appl. Phys. Lett. 79, 126 (2001).CrossRefGoogle Scholar
Gebeyehu, D., Maennig, B., Drechsel, J., Leo, K., and Pfeiffer, M.: Bulk-heterojunction photovoltaic devices based on donor–acceptor organic small molecule blends. Sol. Energy Mater. Sol. Cells 79, 81 (2003).CrossRefGoogle Scholar
Gommans, H.H.P., Cheyns, D., Aernouts, T., Girotto, C., Poortmans, J., and Heremans, P.: Electro-optical study of subphthalocyanine in a bilayer organic solar cell. Adv. Funct. Mater. 17, 2653 (2007).CrossRefGoogle Scholar
Inoue, J., Yamagishi, K., and Yamashita, M.: Photovoltaic properties of multilayer organic thin films. J. Cryst. Growth 298, 782 (2007).CrossRefGoogle Scholar
Alévêque, O., Leriche, P., Cocherel, N., Frère, P., Cravino, A., and Roncali, J.: Star-shaped conjugated systems derived from dithiafulvenyl-derivatized triphenylamines as active materials for organic solar cells. Sol. Energy Mater. Sol. Cells 92, 1170 (2008).CrossRefGoogle Scholar
Hong, Z.R., Lee, C.S., Lee, S.T., Li, W.L., and Shirota, Y.: Bifunctional photovoltaic and electroluminescent devices using a starburst amine as an electron donor and hole-transporting material. Appl. Phys. Lett. 81, 2878 (2002).CrossRefGoogle Scholar
Osasa, T., Yamamoto, S., and Matsumura, M.: Organic solar cells by annealing stacked amorphous and microcrystalline layers. Adv. Funct. Mater. 17, 2937 (2007).CrossRefGoogle Scholar
Kushto, G.P., Kim, W., and Kafafi, Z.H.: Flexible organic photovoltaics using conducting polymer electrodes. Appl. Phys. Lett. 86, 093502 (2005).CrossRefGoogle Scholar
He, C., He, Q., Yi, Y., Wu, G., Bai, F., Shuai, Z., and Li, Y.: Improving the efficiency of solution processable organic photovoltaic devices by a star-shaped molecular geometry. J. Mater. Chem. 18, 4085 (2008).CrossRefGoogle Scholar
Heremans, P., Cheyns, D., and Rand, B.P.: Strategies for increasing the efficiency of heterojunction organic solar cells: Material selection and device architecture. Acc. Chem. Res. 42, 1740 (2009).CrossRefGoogle ScholarPubMed
Rand, B.P., Cheyns, D., Vasseur, K., Giebink, N.C., Mothy, S., Yi, Y., Coropceanu, V., Beljonne, D., Cornil, J., Brédas, J-L., and Genoe, J.: The impact of molecular orientation on the photovoltaic properties of a phthalocyanine/fullerene heterojunction. Adv. Funct. Mater. 22, 2987 (2012).CrossRefGoogle Scholar
Cravino, A., Leriche, P., Alévêque, O., Roquet, S., and Roncali, J.: Light-emitting organic solar cells based on a 3D conjugated system with internal charge transfer. Adv. Mater. 18, 3033 (2006).CrossRefGoogle Scholar
Kageyama, H., Ohishi, H., Tanaka, M., Ohmori, Y., and Shirota, Y.: High-performance organic photovoltaic devices using a new amorphous molecular material with high hole drift mobility, tris[4-(5-phenylthiophen-2-yl)phenyl]amine. Adv. Funct. Mater. 19, 3948 (2009).CrossRefGoogle Scholar
Uhrich, C., Schueppel, R., Petrich, A., Pfeiffer, M., Leo, K., Brier, E., Kilickiran, P., and Baeuerle, P.: Organic thin-film photovoltaic cells based on oligothiophenes with reduced bandgap. Adv. Funct. Mater. 17, 2991 (2007).CrossRefGoogle Scholar
Fujishima, D., Kanno, H., Kinoshita, T., Maruyama, E., Tanaka, M., Shirakawa, M., and Shibata, K.: Organic thin-film solar cell employing a novel electron-donor material. Sol. Energy Mater. Sol. Cells 93, 1029 (2009).CrossRefGoogle Scholar
Wagner, J., Gruber, M., Hinderhofer, A., Wilke, A., Bröker, B., Frisch, J., Amsalem, P., Vollmer, A., Opitz, A., Koch, N., Schreiber, F., and Brütting, W.: High fill factor and open circuit voltage in organic photovoltaic cells with diindenoperylene as donor material. Adv. Funct. Mater. 20, 4295 (2010).CrossRefGoogle Scholar
Kronenberg, N.M., Steinmann, V., Bürckstümmer, H., Hwang, J., Hertel, D., Würthner, F., and Meerholz, K.: Direct comparison of highly efficient solution- and vacuum-processed organic solar cells based on merocyanine dyes. Adv. Mater. 22, 4193 (2010).CrossRefGoogle ScholarPubMed
Ojala, A., Petersen, A., Fuchs, A., Lovrincic, R., Pölking, C., Trollmann, J., Hwang, J., Lennartz, C., Reichelt, H., Höffken, H.W., Pucci, A., Erk, P., Kirchartz, T., and Würthner, F.: Merocyanine/C60 planar heterojunction solar cells: Effect of dye orientation on exciton dissociation and solar cell performance. Adv. Funct. Mater. 22, 86 (2012).CrossRefGoogle Scholar
Steinmann, V., Kronenberg, N.M., Lenze, M.R., Graf, S.M., Hertel, D., Meerholz, K., Bürckstümmer, H., Tulyakova, E.V., and Würthner, F.: Simple, highly efficient vacuum-processed bulk heterojunction solar cells based on merocyanine dyes. Adv. Energy Mater. 1, 888 (2011).CrossRefGoogle Scholar
Lee, Y-T., Chiang, C-L., and Chen, C-T.: Solid-state highly fluorescent diphenylaminospirobifluorenylfumaronitrile red emitters for non-doped organic light-emitting diodes. Chem. Commun. 217 (2008).CrossRefGoogle ScholarPubMed
Opitz, A., Wagner, J., Brütting, W., Salzmann, I., Koch, N., Manara, J., Pflaum, J., Hinderhofer, A., and Schreiber, F.: Charge separation at molecular donor–acceptor interfaces: Correlation between morphology and solar cell performance. IEEE J. Sel, Top. Quantum Electron. 16, 1707 (2010).CrossRefGoogle Scholar
Liu, S-W., Su, W-C., Lee, C-C., Lin, C-F., Yeh, S-C., Chen, C-T., and Lee, J-H.: Comparison of short and long wavelength absorption electron donor materials in C60-based planar heterojunction organic photovoltaics. Org. Electron. 13, 2118 (2012).CrossRefGoogle Scholar
Kirihata, H. and Uda, M.: Externally quenched air counter for low-energy electron emission measurements. Rev. Sci. Instrum. 52, 68 (1981).CrossRefGoogle Scholar
Noguchi, T., Nagashima, S., and Uda, M.: An electron counting mechanism for the open counter operated in air. Nucl. Instrum. Methods Phys. Res., Sect. A 342, 521 (1994).CrossRefGoogle Scholar
Lin, C-F., Liu, S-W., Lee, C-C., Hunag, J-C., Su, W-C., Chiu, T-L., Chen, C-T., and Lee, J-H.: Open-circuit voltage and efficiency improvement of subphthalocyanine-based organic photovoltaic device through deposition rate control. Sol. Energy Mater. Sol. Cells 103, 69 (2012).CrossRefGoogle Scholar
Ratcliff, E.L., Meyer, J., Steirer, K.X., Armstrong, N.R., Olson, D., and Kahn, A.: Energy level alignment in PCDTBT: PC70BM solar cells: Solution processed NiOx for improved hole collection and efficiency. Org. Electron. 13, 744 (2012).CrossRefGoogle Scholar
Guerrero, A., Marchesi, L.F., Boix, P.P., Ruiz-Raga, S., Ripolles-Sanchis, T., Garcia-Belmonte, G., and Bisquert, J.: How the charge-neutrality level of interface states controls energy level alignment in cathode contacts of organic bulk-heterojunction solar cells. ACS Nano 6, 3453 (2012).CrossRefGoogle ScholarPubMed
Rand, B.P., Burk, D.P., and Forrest, S.R.: Offset energies at organic semiconductor heterojunctions and their influence on the open-circuit voltage of thin-film solar cells. Phys. Rev. B 75, 115327 (2007).CrossRefGoogle Scholar
Mutolo, K.L., Mayo, E.I., Rand, B.P., Forrest, S.R., and Thompson, M.E.: Enhanced open-circuit voltage in subphthalocyanine/C60 organic photovoltaic cells. J. Am. Chem. Soc. 128, 8108 (2006).CrossRefGoogle ScholarPubMed
Perez, M.D., Borek, C., Forrest, S.R., and Thompson, M.E.: Molecular and morphological influences on the open circuit voltages of organic photovoltaic devices. J. Am. Chem. Soc. 131, 9281 (2009).CrossRefGoogle ScholarPubMed
Li, G., Shrotriya, V., Huang, J., Yao, Y., Moriarty, T., Emery, K., and Yang, Y.: High-efficiency solution processable polymer photovoltaic cells by self-organization of polymer blends. Nat. Mater. 4, 864 (2005).CrossRefGoogle Scholar
Mihailetchi, V.D., Xie, H.X., de Boer, B., Koster, L.J.A., and Blom, P.W.M.: Charge transport and photocurrent generation in poly(3-hexylthiophene): Methanofullerene bulk-heterojunction solar cells. Adv. Funct. Mater. 16, 699 (2006).CrossRefGoogle Scholar
Wang, J.C., Ren, X.C., Shi, S.Q., Leung, C.W., and Chan, P.K.L.: Charge accumulation induced S-shape J–V curves in bilayer heterojunction organic solar cells. Org. Electron. 12, 880 (2011).CrossRefGoogle Scholar
Tress, W., Petrich, A., Hummert, M., Hein, M., Leo, K., and Riede, M.: Imbalanced mobilities causing S-shaped IV curves in planar heterojunction organic solar cells. Appl. Phys. Lett. 98, 063301 (2011).CrossRefGoogle Scholar
Kobayashi, S., Takenobu, T., Mori, S., Fujiwara, A., and Iwasa, Y.: Fabrication and characterization of C60 thin-film transistors with high field-effect mobility. Appl. Phys. Lett. 82, 4581 (2003).CrossRefGoogle Scholar
Aernouts, T., Geens, W., Poortmans, J., Heremans, P., Borghs, S., and Mertens, R.: Extraction of bulk and contact components of the series resistance in organic bulk donor-acceptor-heterojunctions. Thin Solid Films. 403404, 297 (2002).CrossRefGoogle Scholar
Peumans, P., Yakimov, A., and Forrest, S.R.: Small molecular weight organic thin-film photodetectors and solar cells. J. Appl. Phys. 93, 3693 (2003).CrossRefGoogle Scholar
Taima, T., Chikamatsu, M., Yoshida, Y., Saito, K., and Yase, K.: Effects of intrinsic layer thickness on solar cell parameters of organic p-i-n heterojunction photovoltaic cells. Appl. Phys. Lett. 85, 6412 (2004).CrossRefGoogle Scholar
Sievers, D.W., Shrotriya, V., and Yang, Y.: Modeling optical effects and thickness dependent current in polymer bulk-heterojunction solar cells. J. Appl. Phys. 100, 114509 (2006).CrossRefGoogle Scholar
Nelson, J., Kirkpatrick, J., and Ravirajan, P.: Factors limiting the efficiency of molecular photovoltaic devices. Phys. Rev. B 69, 035337 (2004).CrossRefGoogle Scholar
Lin, C-F., Zhang, M., Liu, S-W., Chiu, T-L., and Lee, J-H.: High photoelectric conversion efficiency of metal phthalocyanine/fullerene heterojunction photovoltaic device. Int. J. Mol. Sci. 12, 476 (2011).CrossRefGoogle ScholarPubMed
Giebink, N.C., Wiederrecht, G.P., Wasielewski, M.R., and Forrest, S.R.: Ideal diode equation for organic heterojunctions. I. Derivation and application. Phys. Rev. B 82, 155305 (2010).CrossRefGoogle Scholar
Ravirajan, P., Haque, S.A., Durrant, J.R., Poplavskyy, D., Bradley, D.D.C., and Nelson, J.: Hybrid nanocrystalline TiO2 solar cells with a fluorene–thiophene copolymer as a sensitizer and hole conductor. J. Appl. Phys. 95, 1473 (2004).CrossRefGoogle Scholar
Hill, C.M., Zhu, Y., and Pan, S.: Fluorescence and electroluminescence quenching evidence of interfacial charge transfer in poly (3-hexylthiophene): Graphene oxide bulk heterojunction photovoltaic devices. ACS Nano 5, 942 (2011).CrossRefGoogle ScholarPubMed
Pettersson, L.A.A., Roman, L.S., and Inganas, O.: Modeling photocurrent action spectra of photovoltaic devices based on organic thin films. J. Appl. Phys. 86, 487 (1999).CrossRefGoogle Scholar
Monestier, F., Simon, J-J., Torchio, P., Escoubas, L., Ratier, B., Hojeij, W., Lucas, B., Moliton, A., Cathelinaud, M., Defranoux, C., and Flory, F.: Optical modeling of organic solar cells based on CuPc and C60. Appl. Opt. 47, C251 (2008).CrossRefGoogle ScholarPubMed
Shirota, Y., Kuwabara, Y., Inada, H., Wakimoto, T., Nakada, H., Yonemoto, Y., Kawami, S., and Imai, K.: Multilayered organic electroluminescent device using a novel starburst molecule, 4,4′,4″-tris(3-methylphenylphenylamino)triphenylamine, as a hole transport material. Appl. Phys. Lett. 65, 807 (1994).CrossRefGoogle Scholar
Barth, S., Muller, P., Riel, H., Seidler, P.F., Riess, W., Vestweber, H., and Bassler, H.: Electron mobility in tris(8-hydroxy-quinoline)aluminum thin films determined via transient electroluminescence from single- and multilayer organic light-emitting diodes. J. Appl. Phys. 89, 3711 (2001).CrossRefGoogle Scholar
Culligan, S.W., Chen, A.C.A., Wallace, J.U., Klubek, K.P., Tang, C.W., and Chen, S.H.: Effect of hole mobility through emissive layer on temporal stability of blue organic light-emitting diodes. Adv. Funct. Mater. 16, 1481 (2006).CrossRefGoogle Scholar
Zhang, M., Wang, H., and Tang, C.W.: Effect of the highest occupied molecular orbital energy level offset on organic heterojunction photovoltaic cells. Appl. Phys. Lett. 97, 143503 (2010).CrossRefGoogle Scholar
Kulshreshtha, C., Choi, J.W., Kim, J-K., Jeon, W.S., Suh, M.C., Park, Y., and Kwon, J.H.: Open-circuit voltage dependency on hole-extraction layers in planar heterojunction organic solar cells. Appl. Phys. Lett. 99, 023308 (2011).CrossRefGoogle Scholar
Servaites, J.D., Ratner, M.A., and Marks, T.J.: Practical efficiency limits in organic photovoltaic cells: Functional dependence of fill factor and external quantum efficiency. Appl. Phys. Lett. 95, 163302 (2009).CrossRefGoogle Scholar
Supplementary material: File

Liu Supplementary Material

Appendix

Download Liu Supplementary Material(File)
File 507.9 KB