Skip to main content Accessibility help

Improved strengthening efficiency of nanoreinforcements realized by a novel melt spinning process

  • Xiaojun Wang (a1), Hailong Shi (a1), Xiaoshi Hu (a1), Linglong Meng (a1) and Kun Wu (a1)...


Carbon nanotubes (CNTs) and silicon carbide nanoparticle (nano-SiCp)-reinforced magnesium (Mg) matrix hybrid composites were prepared through a three-step melt spinning process (ball milling, mechanical stirring, and ultrasonic vibration processing). The hybrid nanoreinforcements showed high strengthening efficiency by which the yield and tensile strength of the hybrid composites experienced 46.7 and 15.2% increment, respectively, compared with the matrix alloy. Obviously, the mixed ball-milling process of SiC nanoparticles and CNTs promoted the dispersion of each other, and both the uniformly distributed SiC nanoparticles and CNTs contributed to the enhanced mechanical performance of the hybrid composites. Besides, the addition of the hybrid nanoreinforcements induced the precipitation of nanosized rod-like MgZn2 phases in the as-extruded composites which also made a contribution to the enhanced performance of the composites. Investigations on the strengthening mechanisms of the hybrid composites show that it originates from grain refinement, load transfer, precipitation enhancement, and Orowan reinforcing. More importantly, the contribution made by each part was analyzed in detail.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Zhan, G-D., Kuntz, J.D., Wan, J., and Mukherjee, A.K.: Single-wall carbon nanotubes as attractive toughening agents in alumina-based nanocomposites. Nat. Mater. 2, 3842 (2003).
2.Iijima, S., Brabec, C., Maiti, A., and Bernholc, J.: Structural flexibility of carbon nanotubes. J. Chem. Phys. 104, 2089 (1996).
3.Selvamani, S.T., Premkumar, S., Vigneshwar, M., Hariprasath, P., and Palanikumar, K.: Influence of carbon nano tubes on mechanical, metallurgical and tribological behavior of magnesium nanocomposite. J. Magnesium Alloys 5, 326335 (2017).
4.Yu, H.H., Li, C.Z., Xin, Y.C., Chapuis, A., Huang, X.X., and Liu, Q.: The mechanism for the high dependence of the Hall–Petch slope for twinning/slip on texture in Mg alloys. Acta Mater. 28, 313326 (2017).
5.Chen, Q., Chen, G., Han, F., Xia, X., and Wu, Y.: Microstructures, mechanical properties, and wear resistances of thixoextruded SiCp/WE43 magnesium matrix composites. Metall. Mater. Trans. A 48, 117 (2017).
6.Byrne, M.T. and Gun’ko, Y.K.: Recent advances in research on carbon nanotube–polymer composites. Adv. Mater. 22, 16721688 (2010).
7.Banerjee, D., Nguyen, T., and Chuang, T.J.: Mechanical properties of single-walled carbon nanotube reinforced polymer composites with varied interphase’s modulus and thickness: A finite element analysis study. Comput. Mater. Sci. 114, 209218 (2016).
8.Liu, Q., Ke, L.M., Liu, F.C., Huang, C.P., and Li, X.: Microstructure and mechanical property of multi-walled carbon nanotubes reinforced aluminum matrix composites fabricated by friction stir processing. Mater. Des. 45, 343348 (2013).
9.Liu, Z.Y., Xiao, B.L., Wang, W.G., and Ma, Z.Y.: Tensile strength and electrical conductivity of carbon nanotube reinforced aluminum matrix composites fabricated by powder metallurgy combined with friction stir processing. J. Mater. Sci. Technol. 30, 649655 (2014).
10.Wu, Y.W., Wu, K., Deng, K.K., Nie, K.B., Wang, X.J., Hu, X.S., and Zheng, M.Y.: Effect of extrusion temperature on microstructures and damping capacities of Grp/AZ91 composite. J. Alloys Compd. 506, 688692 (2010).
11.Cha, S.I., Kim, K.T., Arshad, S.N., Mo, C.B., and Hong, S.H.: Extraordinary strengthening effect of carbon nanotubes in metal-matrix nanocomposites processed by molecular-level mixing. Adv. Mater. 17, 13771381 (2005).
12.Jiang, L., Fan, G.L., Li, Z.Q., Kai, X.Z., Zhang, D., Chen, Z.X., Humphries, S., Heness, G., and Yeung, W.Y.: An approach to the uniform dispersion of a high volume fraction of carbon nanotubes in aluminum powder. Carbon 49, 19651971 (2011).
13.Singla, D., Amulya, K., and Murtaza, Q.: CNT reinforced aluminium matrix composite-a revie. Mater. Today 2, 28862895 (2015).
14.Kwon, H., Takamichi, M., Kawasaki, A., and Leparoux, M.: Investigation of the interfacial phases formed between carbon nanotubes and aluminum in a bulk material. Mater. Chem. Phys. 138, 787793 (2013).
15.Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., and Wang, H.Y.: What is going on in magnesium alloys? J. Mater. Sci. Technol. 34, 245247 (2018).
16.Shi, H.L., Wang, X.J., Zhang, C.L., Li, C.D., Ding, C., and Wu, K.: A novel melt spinning process for Mg matrix composites reinforced by multiwalled carbon nanotubes. J. Mater. Sci. Technol. 32, 13031308 (2016).
17.Shen, M.J., Wang, X.J., Zhang, M.F., Zheng, M.Y., and Wu, K.: Significantly improved strength and ductility in bimodal-size grained microstructural magnesium matrix composites reinforced by bimodal sized SiCp over traditional magnesium matrix composites. Compos. Sci. Technol. 118, 8593 (2015).
18.Jeyasimman, D., Narayanasamy, R., and Ponalagusamy, R.: Role of hybrid reinforcement on microstructural observation, characterization and consolidation behavior of AA 6061 nanocomposite. Adv. Powder Technol. 26, 11711182 (2015).
19.Kwon, H., Cho, S., Leparoux, M., and Kawasaki, A.: Dual-nanoparticulate-reinforced aluminum matrix composite materials. Nanotechnology 23, 225704 (2012).
20.Hu, J.B., Dong, S.M., Wu, B., Zhang, X.Y., Wang, Z., Zhou, H.J., He, P., Yang, J.S., and Li, Q.G.: Mechanical and thermal properties of Cf/SiC composites reinforced with carbon nanotube grown in situ. Ceram. Int. 39, 33873391 (2013).
21.Chuc, N.V., Thanh, C.T., Tu, N.V., Phuong, V.T.Q., Thang, P.V., and Tam, N.T.T.: A simple approach to the fabrication of graphene-carbon nanotube hybrid films on copper substrate by chemical vapor deposition. J. Mater. Sci. Technol. 31, 479483 (2015).
22.Akbarpour, M.R., Salahi, E., Hesari, F.A., Simchi, A., and Kim, H.S.: Fabrication, characterization and mechanical properties of hybrid composites of copper using the nanoparticulates of SiC and carbon nanotubes. Mater. Sci. Eng., A 572, 8390 (2013).
23.Alizadeh, A., Abdollahi, A., and Biukani, H.: Creep behavior and wear resistance of Al 5083 based hybrid composites reinforced with carbon nanotubes (CNTs) and boron carbide (B4C). J. Alloys Compd. 650, 783793 (2015).
24.Li, S.S., Su, Y.S., Ouyang, Q.B., and Zhang, D.: In situ carbon nanotube-covered silicon carbide particle reinforced aluminum matrix composites fabricated by powder metallurgy. Mater. Lett. 167, 118121 (2016).
25.Lachman, N., Wiesel, E., Villoria, R.G.D., Wardle, B.L., and Wagner, H.D.: Interfacial load transfer in carbon nanotube/ceramic microfiber hybrid polymer composites. Compos. Sci. Technol. 72, 14161422 (2012).
26.Li, Z., Fan, G.L., Guo, Q., Li, Z.Q., Su, Y.S., and Zhang, D.: Synergistic strengthening effect of graphene-carbon nanotube hybrid structure in aluminum matrix composites. Carbon 95, 419427 (2015).
27.Nie, K.B., Wang, X.J., Wu, K., Hu, X.S., Zheng, M.Y., and Xu, L.: Microstructure and tensile properties of micro-SiC particles reinforced magnesium matrix composites produced by semisolid stirring assisted ultrasonic vibration. Mater. Sci. Eng., A 528, 87098714 (2011).
28.Wang, X.J., Nie, K.B., Hu, X.S., Wang, Y.Q., Sa, X.J., and Wu, K.: Effect of extrusion temperatures on microstructure and mechanical properties of SiCp/Mg–Zn–Ca composite. J. Alloys Compd. 532, 7885 (2012).
29.Chen, Q., Chen, G., Han, F., Xia, X.S., and Wu, Y.: Microstructures, Mechanical Properties, and Wear Resistances of Thixoextruded SiCp/WE43 Magnesium Matrix Composites. Metall. Mater. Trans. A 48, 34973513 (2017).
30.Chen, L.Y., Xu, J.Q., Choi, H., Pozuelo, M., Ma, X.L., Bhowmick, S., Yang, J.M., Mathaudhu, S., and Li, X.C.: Processing and properties of magnesium containing a dense uniform dispersion of nanoparticles. Nature 528, 539543 (2015).
31.Li, X.D., Ma, H.T., Dai, Z.H., Qian, Y.C., Hu, L.J., and Xie, Y.P.: First-principles study of coherent interfaces of Laves-phase MgZn2 and stability of thin MgZn2 layers in Mg–Zn alloys. J. Alloys Compd. 696, 109117 (2017).
32.Zhao, M.J., Zhu, L.J., Liu, Y., and Bi, J.: A simple model to estimate the yield strength of silicon carbide particulate reinforced aluminium alloy matrix composite. J. Mater. Sci. Technol. 18, 193194 (2002).
33.Jiang, L., Li, Z.Q., Fan, G.L., Cao, L.L., and Zhang, D.: The use of flake powder metallurgy to produce carbon nanotube (CNT)/aluminum composites with a homogenous CNT distribution. Carbon 50, 19931998 (2012).
34.Liu, Z.Y., Xiao, B.L., Wang, W.G., and Ma, Z.Y.: Singly dispersed carbon nanotube/aluminum composites fabricated by powder metallurgy combined with friction stir processing. Carbon 50, 18431852 (2012).
35.Nardone, V.C. and Prewo, K.M.: On the strength of discontinuous silicon carbide reinforced aluminum composites. Scripta Metall. 20, 4348 (1986).
36.Shi, H.L., Wang, X.J., Li, C.D., Hu, X.S., Ding, C., Wu, K., and Huang, Y.D.: A novel method to fabricate CNT/Mg–6Zn composites with high strengthening efficiency. Acta Metall. Sin. 27, 909917 (2014).
37.Li, Q.Q., Viereckl, A., Rottmair, C.A., and Singer, R.F.: Improved processing of carbon nanotube/magnesium alloy composites. Compos. Sci. Technol. 69, 11931199 (2009).


Improved strengthening efficiency of nanoreinforcements realized by a novel melt spinning process

  • Xiaojun Wang (a1), Hailong Shi (a1), Xiaoshi Hu (a1), Linglong Meng (a1) and Kun Wu (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed