Skip to main content Accessibility help

Improved photocatalytic reactivity of ZnO photocatalysts decorated with Ni and their magnetic recoverability

  • Guoliang Yang (a1), Qi Liu (a1), Yinghuan Fu (a1), Hongchao Ma (a1), Chun Ma (a1), Xiaoli Dong (a1), Xinxin Zhang (a1) and Xiufang Zhang (a1)...


In this paper, the Ni-decorated ZnO photocatalysts with magnetic separable characteristics were prepared by a simple replacing-hydrothermal process for the first time. The as-synthesized composites were characterized by powder x-ray diffraction, UV–visible diffuse reflectance spectroscopy, x-ray photoelectron spectroscopy, scanning electron microscope, transmission electron microscopy, and so on. It is found that the introduction of Ni (as Ni0 and Ni2+ forms) turned the morphologies of ZnO photocatalysts, enhanced photoabsorption in a visible light region, and increased amount of surface adsorbed oxygen. The photodegradation test of anthraquinone dye (reactive brilliant blue KN-R) indicated that the Ni-decorated ZnO photocatalysts have better activities as compared to the ZnO reference. The enhancement of photocatalytic activity of Ni-decorated ZnO photocatalysts can be attributed to the existence of Ni2+ doping, Ni0/ZnO heterostructure, and abundant-adsorbed oxygen (as the electronic scavenges), which caused efficient separation of electron–hole pairs in Ni-decorated ZnO photocatalysts. Furthermore, the introduction of metallic Ni also endued ZnO with good magnetic recoverability. The re-collected experiments by external magnetic field indicated that Ni-decorated ZnO as a magnetically recoverable photocatalyst is acceptable.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All
1. Asl, S.K., Sadrnezhaad, S.K., and Kianpourrad, M.: The seeding effect on the microstructure and photocatalytic properties of ZnO nano powders. Mater. Lett. 64(18), 19351938 (2010).
2. Wu, C., Shen, L., Zhang, Y.C., and Huang, Q.: Solvothermal synthesis of Cr-doped ZnO nanowires with visible light-driven photocatalytic activity. Mater. Lett. 65(12), 17941796 (2011).
3. Zeng, J.H., Jin, B.B., and Wang, Y.F.: Facet enhanced photocatalytic effect with uniform single-crystalline zinc oxide nanodisks. Chem. Phys. Lett. 472(1–3), 9095 (2009).
4. Hariharan, C.: Photocatalytic degradation of organic contaminants in water by ZnO nanoparticles: Revisited. Appl. Catal., A 304, 5561 (2006).
5. Tong, T., Zhang, J., Tian, B., Chen, F., and He, D.: Preparation of Fe3+-doped TiO2 catalysts by controlled hydrolysis of titanium alkoxide and study on their photocatalytic activity for methyl orange degradation. J. Hazard. Mater. 155(3), 572579 (2008).
6. Brezová, V., Blazková, A., Karpinsky, L., Grosková, J., Havlínová, B., and Jorík, V.: Phenol decomposition using Mn+/TiO2 photocatalysts supported by the sol–gel technique on glass fibres. J. Photochem. Photobiol., A 109(2), 177183 (1997).
7. Nahar, M.S., Hasegawa, K., and Kagaya, S.: Photocatalytic degradation of phenol by visible light-responsive iron-doped TiO2 and spontaneous sedimentation of the TiO2 particles. Chemosphere 65(11), 19761982 (2006).
8. Mukherjee, P.S. and Ray, A.K.: Major challenges in the design of a large-scale photocatalytic reactor for water treatment. Chem. Eng. Technol. 22(3), 253260 (1999).
9. Arslan, I., Balcioglu, I.A., and Bahnemann, D.W.: Heterogeneous photocatalytic treatment of simulated dyehouse effluents using novel TiO2-photocatalysts. Appl. Catal., B 26(3), 193206 (2000).
10. Liu, S.Q.: Magnetic semiconductor nano-photocatalysts for the degradation of organic pollutants. Environ. Chem. Lett. 10(3), 209216 (2012).
11. Kominami, H., Kumamoto, H., Kera, Y., and Ohtani, B.: Immobilization of highly active titanium(IV) oxide particles: A novel strategy of preparation of transparent photocatalytic coatings. Appl. Catal., B 30(3–4), 329335 (2001).
12. Arabatzis, I.M., Antonaraki, S., Stergiopoulos, T., Hiskia, A., Papaconstantinou, E., Bernard, M.C., and Falaras, P.: Preparation, characterization and photocatalytic activity of nanocrystalline thin film TiO2 catalysts towards 3,5-dichlorophenol degradation. J. Photochem. Photobiol., A 149(1–3), 237245 (2002).
13. Jackson, N.B., Wang, C.M., Luo, Z., Schwitzgebel, J., Ekerdt, J.G., Brock, J.R., and Heller, A.: Attachment of TiO2 powders to hollow glass microbeads: Activity of the TiO2-coated beads in the photoassisted oxidation of ethanol to acetaldehyde. J. Electrochem. Soc. 138(12), 36603664 (1991).
14. Bideau, M., Claudel, B., Dubien, C., Faure, L., and Kazouan, H.: On the “immobilization” of titanium dioxide in the photocatalytic oxidation of spent waters. J. Photochem. Photobiol., A 91(2), 137144 (1995).
15. Pozzo, R.L., Baltanas, M.A., and Cassano, A.E.: Supported titanium oxide as photocatalyst in water decontamination: State of the art. Catal. Today 39(3), 219235 (1997).
16. Horikoshi, S., Watanabe, N., Onishi, H., Hidaka, H., and Serpone, N.: Photodecomposition of a nonylphenol polyethoxylate surfactant in a cylindrical photoreactor with TiO2 immobilized fiberglass cloth. Appl. Catal., B 37(2), 117129 (2002).
17. Anpo, M., Shu, G.Z., Mishima, H., Matsuoka, M., and Yamashita, H.: Design of photocatalysts encapsulated within the zeolite framework and cavities for the decomposition of NO into N2 and O2 at normal temperature. Catal. Today 39(3), 159168 (1997).
18. Pang, H., Li, Y.C., Guan, L.N., Lu, Q.Y., and Gao, F.: TiO2/Ni nanocomposites: Biocompatible and recyclable magnetic photocatalysts. Catal. Commun. 12(7), 611615 (2011).
19. Beydoun, D., Amal, R., Low, G., and McEvoy, S.: Novel Photocatalyst: Titania-coated magnetite. Activity and photodissolution. J. Phys. Chem. B 104(18), 43874396 (2000).
20. Beydoun, D., Amal, R., Scott, J., Low, G., and McEvoy, S.: Studies on the mineralization and separation efficiencies of a magnetic photocatalyst. Chem. Eng. Technol. 24(7), 745748 (2001).
21. Beydoun, D. and Amal, R.: Implications of heat treatment on the properties of a magnetic iron oxide–titanium dioxide photocatalyst. Mater. Sci. Eng., B 94(1), 7181 (2002).
22. Chen, F., Xie, Y.D., Zhao, J.C., and Lu, G.X.: Photocatalytic degradation of dyes on a magnetically separated photocatalyst under visible and UV irradiation. Chemosphere 44(5), 11591168 (2001).
23. Gao, Y., Chen, B.H., Li, H.L., and Ma, Y.X.: Preparation and characterization of a magnetically separated photocatalyst and its catalytic properties. Mater. Chem. Phys. 80(1), 348355 (2003).
24. Lee, S., Drwiega, J., Wu, C., Mazyck, D., and Sigmund, W.M.: Anatase TiO2 nanoparticle coating on barium ferrite using titanium bis-ammonium lactato dihydroxide and its use as a magnetic photocatalyst. Chem. Mater. 16(6), 11601164 (2004).
25. Rana, S. and Misra, R.D.K.: The anti-microbial activity of titania-nickel ferrite composite nanoparticles. JOM 57(12), 6569 (2005).
26. Fu, W., Yang, H., Chang, L., Li, M., Hari-Bala, , and Zou, G.: Anatase TiO2 nanolayer coating on strontium ferrite nanoparticles for magnetic photocatalyst. Colloids Surf., A 289(1–3), 4752 (2006).
27. Fu, W., Yang, H., Li, M., Chang, L., Yu, Q., Xu, J., and Zou, G.: Preparation and photocatalytic characteristics of core-shell structure TiO2/BaFe12O19 nanoparticles. Mater. Lett. 60(21–22), 27232727 (2006).
28. Zhang, L., Wang, Z., Zhou, L., Shang, M., and Sun, S.: Fe3O4 coupled BiOCl: A highly efficient magnetic photocatalyst. Appl. Catal., B 90(3–4), 458462 (2009).
29. Yu, X., Liu, S., and Yu, J.: Superparamagnetic γ-Fe2O3@SiO2@TiO2 composite microspheres with superior photocatalytic properties. Appl. Catal., B 104(1–2),1220 (2011).
30. Beydoun, D., Amal, R., Low, G., and McEvoy, S.: Occurrence and prevention of photodissolution at the phase junction of magnetite and titanium dioxide. J. Mol. Catal. A: Chem. 180(1–2), 193200 (2002).
31. Abramson, S., Srithammavanh, L., Siaugue, J.M., Horner, O., Xu, X., and Cabuil, V.: Nanometric core-shell-shell γ-Fe2O3/SiO2/TiO2 particles. J. Nanopart. Res. 11(2), 459465 (2009).
32. Wang, C., Ao, Y., Wang, P., Hou, J., and Qian, J.: A facile method for the preparation of titania-coated magnetic porous silica and its photocatalytic activity under UV or visible light. Colloids Surf., A 360(1–3), 184189 (2010).
33. Singh, S., Rama, N., and Ramachandra Rao, M.: Influence of d-d transition bands on electrical resistivity in Ni doped polycrystalline ZnO. Appl. Phys. Lett. 88(22), 222111 (2006).
34. Liu, J., Yu, M., and Zhou, W.: Fabrication of Mn-doped ZnO diluted magnetic semiconductor nanostructures by chemical vapor deposition. J. Appl. Phys. 99(8), 08M119 (2006).
35. Hsu, C., Chang, S., Hung, H., Lin, Y., Huang, C., Tseng, Y., and Chen, I.: Indium-diffused ZnO nanowires synthesized on ITO-buffered Si substrate. Nanotechnology 17(2), 516519 (2006).
36. Cheng, B., Xiao, Y., Wu, G., and Zhang, L.: Controlled growth and properties of one-dimensional ZnO nanostructures with Ce as activator/dopant. Adv. Funct. Mater. 14(9), 913919 (2004).
37. Pal, U., Garcia-Serrano, J., Casarrubias-Segura, G., Koshizaki, N., Sasaki, T., and Terahuchi, S.: Structure and optical properties of M/ZnO (M=Au, Cu, Pt) nanocomposites. Sol. Energy Mater. Sol. Cells 81(3), 339348 (2004).
38. Xu, C., Cao, L., Su, G., Liu, W., Qu, X., and Yu, Y.: Preparation, characterization and photocatalytic activity of Co-doped ZnO powders. J. Alloys Compd. 497(1–2), 373376 (2010).
39. Sun, X.M., Chen, X., Deng, Z.X., and Li, Y.D.: A CTAB-assisted hydrothermal orientation growth of ZnO nanorods. Mater. Chem. Phys. 78(1), 99104 (2002).
40. Li, Z.H., Luan, Y.X., Wang, Q.Z., Zhuang, G.S., Qi, Y.X., Wang, Y., and Wang, C.G.: ZnO nanostructure construction on zinc foil: The concept from an ionic liquid precursor aqueous solution. Chem. Commun. 41, 62736275 (2009).
41. Vostrikov, A.A., Fedyaeva, O.N., Shishkin, A.V., and Sokol, M.Ya.: ZnO nanoparticles formation by reactions of bulk Zn with H2O and CO2 at sub- and supercritical conditions: II. Morphology and properties of nanoparticles. J. Supercrit. Fluids 48(2), 161166 (2009).
42. Srivastava, H., Tiwari, P., Srivastava, A.K., Porwal, S., and Deb, S.K.: Water-vapour-assisted growth of ZnO nanowires on a zinc foil and the study of the effect of synthesis parameters. Semicond. Sci. Technol. 26(8), 085030085038 (2011).
43. Li, W.J., Shi, E.W., Zhong, W.Z., and Yin, Z.W.: Growth mechanism and growth habit of oxide crystals. J. Cryst. Growth 203(1–2), 186196 (1999).
44. Wang, B.G., Shi, E.W., and Zhong, W.Z.: Understanding and controlling the morphology of ZnO crystallites under hydrothermal conditions. Cryst. Res. Technol. 32(5), 659667 (1997).
45. Fomenko, V.S.: Emission Properties of Materials: Handbook, 4th ed. (in Russian), (Naukova Dumka, Kiev, 1981).
46. Prieto, P., Nistor, V., Nouneh, K., Oyama, M., Abd-Lefdil, M., and Díaz, R.: XPS study of silver, nickel and bimetallic silver–nickel nanoparticles prepared by seed-mediated growth. Appl. Surf. Sci. 258(22), 88078813 (2012).
47. Roberts, M.W. and Smart, R.St.C.: The defect structure of nickel oxide surfaces as revealed by photoelectron spectroscopy. J. Chem. Soc., Faraday Trans. 1 80(11), 29572968 (1984).
48. Moulder, J.F., Stickle, W.F., Sobol, P.E., and Bomben, K.D.: Handbook of X-ray Photoelectron Spectroscopy (Perkin Elmer, Eden Prairie, 1992); pp. 8485.
49. Yu, G.H., Zeng, L.R., W.Zhu, F., L.Chai, C., and Lai, W.Y.: Magnetic properties and x-ray photoelectron spectroscopy study of NiO/NiFe films prepared by magnetron sputtering. J. Appl. Phys. 90(8), 40394043 (2001).
50. Yin, Z.G., Chen, N.F., Yang, F., Song, S.L., Chai, C.L., Zhong, J., Qian, H.J., and Ibrahim, K.: Structural, magnetic properties and photoemission study of Ni-doped ZnO. Solid State Commun. 135(7), 430433 (2005).
51. Carley, A.F., Jackson, S.D., O’Shea, J.N., and Roberts, M.W.: The formation and characterisation of Ni3+– an X-ray photoelectron spectroscopic investigation of potassium-doped Ni(110)–O. Surf. Sci. 440(3), 868874 (1999).
52. Moroney, L.M., Smart, R.St.C., and Roberts, M.W.: Studies of the thermal decomposition of β-NiO(OH) and nickel peroxide by X-ray photoelectron spectroscopy. J. Chem. Soc., Faraday Trans. 1 I79(8), 17691778 (1983).
53. Iqbal, J., Wang, B.Q., Liu, X.F., Yu, D.P., He, B., and Yu, R.H.: Oxygen-vacancy-induced green emission and room-temperature ferromagnetism in Ni-doped ZnO nanorods. New J. Phys. 11(6), 063009 (2009).
54. Jiang, J., Wang, X.T., Zhu, L.P., Zhang, L.Q., Yang, Z.G., and Ye, Z.Z.: Electrical and magnetic properties of ZnNiO thin films deposited by pulse laser deposition. J. Zhejiang Univ., Sci., A (Appl. Phys. Eng.) 12(7), 561566 (2011).
55. Dar, T.A., Agrawal, A., and Sen, P.: Pulsed laser deposited nickel doped zinc oxide thin Films: Structural and optical investigations. J. Nano- Electron. Phys. 5(2), 02024 (2013).
56. Marta, I.L.: Heterogeneous photocatalysis: Transition metal ions in photocatalytic systems. Appl. Catal., B 23(2–3), 89114 (1999).
57. Fujishima, A., N.Rao, T., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1(1), 121 (2000).
58. Jing, L.Q., Wang, B.Q., Xin, B.F., Li, S.D., Shi, K.Y., Cai, W.M., and Fu, H.G.: Investigations on the surface modification of ZnO nanoparticle photocatalyst by depositing Pd. J. Solid State Chem. 177(11), 42214227 (2004).
59. Kim, H.G., Borse, P.H., Choi, W., and Lee, J.S.: Photocatalytic nanodiodes for visible-light photocatalysis. Angew. Chem., Int. Ed. 44(29), 45854589 (2005).
60. Donkova, B., Dimitrov, D., Kostadinov, M., Mitkova, E., and Mehandjiev, D.: Catalytic and photocatalytic activity of lightly doped catalysts M: ZnO (M=Cu, Mn). Mater. Chem. Phys. 123(2–3), 563568 (2010).
61. Kanai, Y.: Admittance spectroscopy of Cu-doped ZnO crystals. Jpn. J. Appl. Phys. 30(4R), 703707 (1991).
62. Ma, H.C., Teng, K., Fu, Y.H., Song, Y., Wang, Y.W., and Dong, X.L.: Synthesis of visible-light responsive Sn-SnO2/C photocatalyst by simple carbothermal reduction. Energy Environ. Sci. 4(8), 30673074 (2011).
63. Linsebigler, A.L., Lu, G.Q., and Yates, J.T.: Photocatalysis on TiO2 Surfaces: Principles, mechanisms, and selected results. Chem. Rev. 95(3), 735758 (1995).
64. Li, X.Z. and Li, F.B.: Study of Au/Au3+-TiO2 photocatalysts toward visible photooxidation for water and wastewater treatment. Environ. Sci. Technol. 35(11), 23812387 (2001).
65. Khalid, M., Ziese, M., Setzer, A., Esquinazi, P., Lorenz, M., Hochmuth, H., Grundmann, M., Spemann, D., Butz, T., Brauer, G., Anwand, W., Fischer, G., Adeagbo, W.A., Hergert, W., and Ernst, A.: Defect-induced magnetic order in pure ZnO films. Phys. Rev. B 80(3), 035331 (2009).
66. Wang, Q., Sun, Q., Chen, G., Kawazoe, Y., and Jena, P.: Vacancy-induced magnetism in ZnO thin films and nanowires. Phys. Rev. B 77(20), 205411 (2008).


Type Description Title
Supplementary materials

Yang supplementary material
Yang supplementary material 1

 Word (245 KB)
245 KB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed