Skip to main content Accessibility help
×
Home

Improved lithium insertion/extraction properties of single-walled carbon nanotubes by high-energy ball milling

  • JiYong Eom (a1) and HyukSang Kwon (a1)

Abstract

The effects of ball milling on lithium (Li) insertion/extraction properties into/from single-walled carbon nanotubes (SWNTs) were investigated. The SWNTs were synthesized on supported catalysts by thermal chemical-vapor deposition method, purified, and mechanically ball-milled by high-energy ball milling. The purified SWNTs and the ball-milled SWNTs were electrochemically inserted/extracted with Li. The structural and chemical modifications in the ball-milled SWNTs change the insertion/extraction properties of Li ions into/from the ball-milled SWNTs. The reversible capacity (Crev) increases with increase in the ball milling time, from 616 mAh/g (Li1.7C6) for the purified SWNTs to 988 mAh/g (Li2.7C6) for the ball-milled SWNTs. The undesirable irreversible capacity (Cirr) decreases continuously with increase in the ball milling time, from 1573 mAh/g (Li4.2C6) for the purified SWNTs to 845 mAh/g (Li2.3C6) for the ball-milled SWNTs. The enhanced Crev of the ball-milled SWNTs is presumably due to a continuous decrease in the Cirr because the SWNTs develop a densely packed structure on the ball milling process. The insertion of Li ions into the ball-milled SWNTs is facilitated by various Li insertion sites formed during the ball milling process in spite of small surface area than the purified SWNTs. Lithium ions inserted into various insertion sites enhance the Crev in the ball-milled SWNTs with the large voltage hysteresis by hindrance of the extraction of Li ions from the ball-milled SWNTs. In addition, the ball-milled samples exhibit more stable cycle capacities than the purified samples during the charge/discharge cycling.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: hskwon@kaist.ac.kr

References

Hide All
1Maurin, G., Bousquet, C., Henn, F., Bernier, P., Almairac, R.Simon, B.: Electrochemical intercalation of lithium into multiwall carbon nanotubes. Chem. Phys. Lett. 312, 14 1999
2Wu, G.T., Wang, C.S., Zhang, X.B., Yang, H.S., Qi, Z.F., He, P.M.Li, W.Z.: Structure and lithium insertion properties of carbon nanotubes. J. Electrochem. Soc. 146, 1696 1999
3Ishihara, T., Kawahara, A., Nishiguchi, H., Yoshio, M.Takita, Y.: Effects of synthesis condition of graphitic nanocarbon tube on anodic property of Li-ion rechargeable battery. J. Power Sources 97–98, 129 2001
4Frackowiak, E., Gautier, S., Gaucher, H., Bonnamy, S.Beguin, F.: Electrochemical storage of lithium multiwalled carbon nanotubes. Carbon 37, 61 1999
5Yang, Z.H.Wu, H.Q.: Electrochemical intercalation of lithium into carbon nanotubes. Solid State Ionics 143, 173 2001
6Kumar, T.P., Stephan, A.M., Thayananth, P., Subramanian, V., Gopukumar, S., Renganathan, N.G., Raghavan, M.Muniyandi, N.: Thermally oxidized graphites as anodes for lithium-ion cells. J. Power Sources 97–98, 118 2001
7Gao, B., Kleinhammes, A., Tang, X.P., Bower, C., Fleming, L., Wu, Y.Zhou, O.: Electrochemical intercalation of single-walled carbon nanotubes with lithium. Chem. Phys. Lett. 307, 153 1999
8Claye, A.S., Fischer, J.E., Huffman, C.B., Rinzler, A.G.Smalley, R.E.: Solid-state electrochemistry of the Li single wall carbon nanotube system. J. Electrochem. Soc. 147, 2845 2000
9Gao, B., Bower, C., Lorentzen, J.D., Fleming, L., Kleinhammes, A., Tang, X.P., McNeil, L.E., Wu, Y.Zhou, O.: Enhanced saturation lithium composition in ball-milled single-walled carbon nanotubes. Chem. Phys. Lett. 327, 69 2000
10Shimoda, H., Gao, B., Tang, X.P., Kleinhammes, A., Fleming, L., Wu, Y.Zhou, O.: Lithium intercalation into etched single-wall carbon nanotubes. Physica B (Amsterdam) 323, 133 2002
11Shimoda, H., Gao, B., Tang, X.P., Kleinhammes, A., Fleming, L., Wu, Y.Zhou, O.: Lithium intercalation into opened single-wall carbon nanotubes: Storage capacity and electronic properties. Phys. Rev. Lett. 88, 15502 2002
12Benjamin, J.S.: Production of metallic composite powder with fine controlled microstructure. Met. Powder Rep. 45, 122 1990
13Xing, W., Dunlap, R.A.Dahn, J.R.: Studies of lithium insertion in ballmilled sugar carbons. J. Electrochem. Soc. 145, 62 1998
14Eom, J.Y., Kim, D.Y.Kwon, H.S.: Effects of ball-milling on lithium insertion into multi-walled carbon nanotubes synthesized by thermal chemical vapour deposition. J. Power Sources 157, 507 2006
15Zheng, B., Li, Y.Liu, J.: CVD synthesis and purification of single-walled carbon nanotubes on aerogel-supported catalyst. Appl. Phys. A 74, 345 2002
16Eom, J.Y., Kwon, H.S., Liu, J.Zhou, O.: Lithium insertion into purified and etched multi-walled carbon nanotubes synthesized on supported catalysts by thermal CVD. Carbon 42, 2589 2004
17Kinoshita, K.: Carbon: Electrochemical and Physicochemical Properties Wiley New York 1988 387
18Besenhard, J.O.: Handbook of Battery Materials Wiley Weinheim, Germany 1999 244
19Osaka, T.Datta, M.: Energy Storage Systems for Electronics Gordon Singapore 2000 251
20Dahn, J.R., Zheng, T., Liu, Y.Xue, J.S.: Mechanisms for lithium insertion in carbonaceous materials. Science 270, 590 1995
21Zhou, P., Papanek, P., Lee, R.Fischer, J.E.: Local structure and vibrational spectroscopy of disordered carbons for Li batteries: Neutron-scattering studies. J. Electrochem. Soc. 144, 1744 1997
22Levi, M.D., Levi, E.A.Aurbach, D.: The mechanism of lithium intercalation in graphite film electrodes in aprotic media. J. Electroanal. Chem. 421, 89 1997
23Liu, J., Rinzler, A.G., Dai, H., Hafner, J.H., Bradley, A.R.K., Boul, P.J., Lu, A., Iverson, T., Shelimov, A.K., Huffman, C.B., Macias, F.R., Shon, Y.S., Lee, T.R., Colbert, D.T.Smalley, R.E.: Fullerene pipes. Science 280, 1253 1998
24Saito, T., Matsushige, K.Tanaka, K.: Chemical treatment and modification of multi-walled carbon nanotubes. Physica B (Amsterdam) 323, 280 2002
25Xing, W.Dahn, J.R.: Study of irreversible capacities for Li insertion in hard and graphitic carbons. J. Electrochem. Soc. 144, 1195 1997
26Peled, E., Menachem, C., Tow, D.B.Melman, A.: Improved graphite anode for lithium-ion batteries. J. Electrochem. Soc. 143, L4 1996
27Eli, Y.E.Koch, V.R.: Chemical oxidation: A route to enhanced capacity in Li-ion graphite anodes. J. Electrochem. Soc. 144, 2968 1997
28Yang, Z.H.Wu, H.Q.: The electrochemical impedance measurements of carbon nanotubes. Chem. Phys. Lett. 343, 235 2001
29Yang, Z., Feng, Y., Li, Z., Sang, S., Zhou, Y.Zeng, L.: An investigation of lithium intercalation into the carbon nanotubes by a.c. impedance. J. Electroanal. Chem. 580, 340 2005

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed