Hostname: page-component-8448b6f56d-sxzjt Total loading time: 0 Render date: 2024-04-23T23:17:05.562Z Has data issue: false hasContentIssue false

Improved dehydrogenation of LiBH4 supported on nanoscale SiO2 via liquid phase method

Published online by Cambridge University Press:  31 January 2011

X.Y. Chen
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, China
Y.H. Guo
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, China
L. Gao
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, China
X.B. Yu*
Affiliation:
Department of Materials Science, Fudan University, Shanghai 200433, China
*
a)Address all correspondence to this author. e-mail: yuxuebin@fudan.edu.cn
Get access

Abstract

A wet loading method was developed to produce nano-sized LiBH4 combined with nano-SiO2 templates. The multicomponent LiBH4/SiO2 material synthesized by the wet method has been found to dehydrogenate at much lower temperatures than the pure LiBH4, as well as LiBH4/SiO2 mixtures prepared by ball milling. For example, the onset of dehydrogenation was decreased to about 200 °C for a wet-treated LiBH4/SiO2 mixture with a mass ratio of 1:1, and the majority of the hydrogen could be released below 350 °C. The improved dehydrogenation of the wet-treated LiBH4/SiO2 mixtures can be attributed to the destabilization of SiO2, resulting in the formation of lithium metasilicate (Li2SiO3) upon heating, and the confinement of LiBH4 to form nanoscale particles.

Keywords

Type
Articles
Copyright
Copyright © Materials Research Society 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Züttel, A., Rentsch, S., Fischer, P., Wenger, P., Sudan, P., Mauron, Ph., Emmenenegger, C.: Hydrogen storage properties of LiBH4. J. Alloys Compd. 356–357, 515 (2003)CrossRefGoogle Scholar
2.Züttel, A., Wenger, P., Rentsch, S., Sudan, P., Mauron, P., Emmenegger, C.: LiBH4 a new hydrogen storage material. J. Power Sources 118, 1 (2003)CrossRefGoogle Scholar
3.Pinkerton, F.E., Meisner, G.P., Meyer, M.S., Balogh, M.P., Kundrat, M.D.: Hydrogen desorption exceeding ten weight percent from the new quaternary hydride Li3BN2H8. J. Phys. Chem. B 109, 6 (2005)CrossRefGoogle ScholarPubMed
4.Orimoa, S., Nakamoria, Y., Kitaharaa, G., Miwab, K., Ohbab, N., Towatab, S., Züttel, A.: Dehydriding and rehydriding reactions of LiBH4. J. Alloys Compd. 404–406, 427 (2005)CrossRefGoogle Scholar
5.Friedrichs, O., Buchter, F., Borgschulte, A., Remhof, A., Zwicky, C.N., Mauron, Ph., Bielmann, M., Züttel, A.: Direct synthesis of Li[BH4] and Li[BD4] from the elements. Acta Mater. 56, 949 (2008)CrossRefGoogle Scholar
6.Xu, J., Yu, X.B., Zou, Z.Q., Li, Z.L., Wu, Z., Akins, D.L., Yang, H.: Enhanced dehydrogenation of LiBH4 catalyzed by carbon-supported Pt nanoparticles. Chem. Commun. (Camb.) 44, 5740 (2008)CrossRefGoogle Scholar
7.Kang, X.D., Wang, P., Ma, L.P., Cheng, H.M.: Reversible hydrogen storage in LiBH4 destabilized by milling with Al. Appl. Phys. A 89, 963 (2007)CrossRefGoogle Scholar
8.Yu, X.B., Grant, D.M., Walker, G.S.: Low-temperature dehydrogenation of LiBH4 through destabilization with TiO2. J. Phys. Chem. C 112, 11059 (2008)Google Scholar
9.Mosegaard, L., Møller, B., Jùrgensen, J.E., Filinchuk, Y., Cerenius, Y., Hanson, J.C., Dimasi, E., Besenbacher, F., Jensen, T.R.: Reactivity of LiBH4: In situ synchrotron radiation powder x-ray diffraction study. J. Phys. Chem. C 112, 1299 (2008)Google Scholar
10.Yu, X.B., Dou, T., Wu, Z., Xia, B.J., Shen, J.: Electrochemical hydrogen storage in Ti–V-based alloys surface-modified with carbon nanoparticles. Nanotechnology 17, 268 (2006)CrossRefGoogle Scholar
11.Bösenberg, U., Doppiu, S., Mosegaard, L., Barkhordarian, G., Eigen, N., Borgschulte, A., Jensen, T.R., Cerenius, Y., Gutfleisch, O., Klassen, T., Dornheim, M., Bormann, R.: Hydrogen sorption properties of MgH2–LiBH4 composites. Acta Mater. 55, 3951 (2007)CrossRefGoogle Scholar
12.Vajo, J.J., Skeith, S.L.: Reversible storage of hydrogen in destabilized LiBH4. J. Phys. Chem. B 109, 3719 (2005)CrossRefGoogle ScholarPubMed
13.Gross, F., Vajo, J.J., Van Atta, L.S., Olson, G.L.: Enhanced hydrogen storage kinetics of LiBH4 in nanoporous carbon scaffolds. J. Phys. Chem. C 112, 5651 (2008)CrossRefGoogle Scholar
14.Kissinger, H.E.: Reaction kinetics in differential thermal analysis. Anal. Chem. 29, 1702 (1957)CrossRefGoogle Scholar
15.Wagemaker, M., Borghols, W.J.H., Mulder, F.M.: Large impact of particle size on insertion reactions: A case for anatase LixTiO2. J. Am. Chem. Soc. 129, 4323 (2007)CrossRefGoogle ScholarPubMed
16.Badmos, A.Y., Bhadeshia, H.K.D.H.: The evolution of solutions: A thermodynamic analysis of mechanical alloying. Metall. Mater. Trans. A 11, 2189 (1997)CrossRefGoogle Scholar