Skip to main content Accessibility help
×
Home

Ignition mechanism of mechanically activated Me–Si(Me = Ti, Nb, Mo) mixtures

  • U. Anselmi-Tamburini (a1), F. Maglia (a2), S. Doppiu (a3), M. Monagheddu (a3), G. Cocco (a3) and Z.A. Munir (a4)...

Abstract

The influence of mechanical activation on the characteristics and mechanism of ignition of self-propagating high-temperature synthesis processes of different silicides in the systems Me–Si (Me =Ti, Nb, Mo) was investigated. The results show that mechanical activation does not alter the mechanism involved but influences significantly the ignition characteristics. The influence, however, strongly depends on the stoichiometry of the mixtures. The composition Ti:Si = 1:2 shows the largest influence, with the ignition temperatures decreasing from 1400 °C for unmilled powders to about 600 °C for powders milled for several hours. The compositionsTi:Si = 5:3, Nb:Si = 1:2 show less pronounced decreases, while the compositionMo:Si = 1:2 shows no decrease. These differences are discussed in terms of the role of microstructure in the reaction mechanism and the different response of the systems to contamination, particularly from oxygen. The results suggest that for these systems self-ignition processes during milling cannot be explained only on the basis of the decrease in the ignition temperature.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: tau@chifis.unipv.it

References

Hide All
1Gaffet, E. and Malhouroux-Gaffet, N., Nanocrystalline MoSi2 phase formation induced by mechanically activated annealing. J. Alloys Compd. 205, 27 (1994).
2Yen, B.K., Aizawa, T. and Kihara, J., Reaction synthesis of titanium silicides via self-propagating reaction kinetics. J. Am. Ceram. Soc. 81, 1953 (1998).
3Bernard, F., Charlot, F., Gaffet, E. and Niepce, J.C., Optimization of MASHS parameters to obtain a nanometric FeAl intermetallic. Int. J. Self-Propag. High-Temp. Synth. 7, 233 (1998).
4Charlot, F., Gaffet, E., Zeghmati, B., Bernard, B. and Niepce, J.C., Mechanically activated synthesis studied by x-ray diffraction in the Fe-Al system. Mater. Sci. Eng. A 262, 279 (1999).
5Maglia, F., Anselmi-Tamburini, U., Cocco, G., Monagheddu, M., Bertolino, N. and Munir, Z.A., Combustion synthesis of mechanically activated powders in the Ti-Si system. J. Mater. Res. 16, 1074 (2001).
6Atzmon, M., In situ thermal observation of explosive compound-formation reaction during mechanical alloying. Phys. Rev. Lett. 64, 487 (1990).
7Popovich, A.A., Reva, V.P., Vasilenko, V.N. and Belous, O.A., Mechanochemical technology of synthesis of refractory compounds and alloys based on them. Mater. Sci. Forum 88–90, 737 (1992).
8Ma, E., Pagan, J., Cranford, G. and Atzmon, M., Evidence for self-sustained molybdenum disilicide formation during room-temperature high-energy ball milling of elemental powders. J. Mater. Res. 8, 1836 (1993).
9Takacs, L., Self-sustaining reactions induced by ball milling. Prog. Mater. Sci. 47, 355 (2002).
10Schaffer, G.B. and McCormick, P.G., Anomalous combustion effects during mechanical alloying. Metall. Trans. 22A, 3019 (1991).
11Gras, Ch., Vrel, D., Gaffet, E. and Bernard, F., Mechanical activation effect on the self-sustaining combustion reaction in the Mo–Si system. J. Alloys Compd. 314, 240 (2001).
12Park, H-S., Shin, K-S. and Kim, T-S., Effect of mechanical alloying on combustion synthesis of MoSi2. J. Mater. Res. 16, 3060 (2001).
13Vilunov, V.N. and Zarko, V.E., Ignition of solids (Elsevier Science Publishers, Amsterdam, Oxford, New York, Tokyo, 1989).
14Barzykin, V.V., Initiation of SHS processes. Pure Appl. Chem. 64, 909 (1992).
15Trambukis, J. and Munir, Z.A., Effect of particle dispersion on the mechanism of combustion synthesis of titanium silicide. J. Am. Ceram. Soc. 73, 1240 (1990).
16Merzhanov, A.G. and Averson, A.E., Present state of the thermal ignition theory: Invited review. Combust. Flame 16, 89 (1971).
17Strunina, A.G., Martem’yanova, T.M., Barzykin, V.V. and Ermakov, V.I., Ignition of gasless systems by a combustion wave. Fiz. Goreniya Vizryva 10, 518 (1974).
18Strunina, A.G., Vaganova, N.I. and Barzykin, V.V., Energy analysis of ignition process for gasless systems by a combustion wave. Fiz. Goreniya Vizryva 13, 835 (1977).
19Zhang, Y. and Stangle, G., Ignition criteria for self-propagating combustion synthesis. J. Mater. Res . 8, 1703 (1993).
20Zhang, Y. and Stangle, G., A micromechanistic model of the combustion synthesis process: Part II. Numerical simulation. J. Mater. Res. 9, 2605 (1994).
21He, C.H. and Stangle, G., The mechanism and kinetics of the niobium-carbon reaction under self-propagating high-temperature synthesis-like conditions. J. Mater. Res. 10, 2829 (1995).
22Doppiu, S., Monagheddu, M., Cocco, G., Maglia, F., Anselmi-Tamburini, U. and Munir, Z.A., Mechanochemistry of the titanium-silicon system: Compositional effects. J. Mater. Res. 16, 1266 (2001).
23Kwon, Y-S., Gerasimov, K.B. and Yoon, S-K., Ball temperatures during mechanical alloying in planetary mills. J. Alloys and Compd. 346, 276 (2002).
24Woolman, J.N., Petrovic, J.J. and Munir, Z.A., Incorporating Mg into the Si sub-lattice of molybdenum disilicide. Scripta Mater. 48, 819 (2003).
25Sannia, M., Orrù, R., Garay, J.E., Cao, G. and Munir, Z.A., Effect of phase transformation during high energy milling on field activated synthesis of dense MoSi2. Mater. Sci. Eng. A 345, 270 (2003).
26Munir, Z.A. and Tamburini, U. Anselmi, Self-propagating exothermic reactions: The synthesis of high-temperature materials by combustion. Mater. Sci. Rep. 3, 277 (1989).
27Cockeram, B.V. and Rapp, R.A., The kinetics of multilayered titanium-silicide coatings grown by the pack cementation method. Metall. Mater. Trans. 26A, 777 (1995).
28Jongste, J.F., Alkemande, P.F., Janssen, G.C.A. and S.Radelaar, , Kinetics of the formation of C49 TiSi2 from Ti-Si multilayers as observed by in-situ stress measurements. J. Appl. Phys. 74, 3869 (1993).
29Atzmon, M., The effect of interfacial diffusion-barriers on the ignition of self-sustained reactions in metal-metal diffusion couples. Metall. Trans . 23A, 49 (1992).
30De Avillez, R.R., Clevenger, L.A. and Thompson, C.V., Quantitative investigation of titanium/amorphous-silicon multilayer thin film reactions. J. Mater. Res. 5, 593 (1990).
31Clavenger, L.A., Cabral, C., Ray, R.A., Lavoie, C., Jordan-Sweet, J., Brauer, S., Morales, G., Ludwig, K.F. and Stephenson, G.B., Formation of a crystalline metal-rich silicide in thin film titanium/silicon reactions. Thin Solid Films 289, 220 (1996).
32Cocchi, R., Giubertoni, D., Ottaviani, G., Marangon, T., Mastracchio, G., Queirolo, G. and Sabbadini, A., Initial reactions in Ti-Si bilayers: New indications from in situ measurements. J. Appl. Phys. 89, 6079 (2001).
33Clavenger, L.A., Harper, J.M.E., Cabral, C., Nobili, C., Ottaviani, G. and Mann, R., Kinetic-analysis of C49-TiSi2 and C54-TiSi2 formation at rapid thermal annealing rates. J. Appl. Phys. 72, 4978 (1992).
34Butz, R., Rubloff, G.W., Tan, T.Y. and Ho, P.S., Chemical and structural aspects of reaction at the Ti/Si interface. Phys. Rev. B. 30, 5421 (1984).
35Wang, M.H. and Chen, L.J., Phase formation in the interfacial reactions of ultrahigh-vacuum deposited titanium thin-films on (111) Si. J. Appl. Phys. 71, 5918 (1992).
36Kasica, R.J. and Cotts, E.J., The enthalphy of formation of thin film titanium disilicide. J. Appl. Phys. 82, 1488 (1997).
37Rubloff, G.W., Tromp, R.M. and van Loenen, E.J., Material reaction and silicide formation at the refractory metal/silicon interface. Appl. Phys. Lett. 48, 1600 (1986).
38Bentini, G.G., Nipoti, R., Armigliato, A., Berti, M., Drigo, A.V. and Cohen, C., Growth and structure of titanium silicide phases formed by thin Ti films on Si crystals. J. Appl. Phys. 57, 270 (1985).
39Hung, L.S., Gyulai, J., Mayer, J.W., Lau, S.S. and Nicolet, M-A., Kinetics of TiSi2 formation by thin Ti films on Si. J. Appl. Phys. 54, 5076 (1983).
40Chambers, S.A., Hill, D.M., Xu, F. and Weaver, J.H., Silicide formation at the Ti/Si(111) interface: Diffusion parameters and behavior at elevated temperatures. Phys. Rev. B 35, 634 (1987).
41Beyers, R., Thermodynamic considerations in refractory metal-silicon-oxygen systems. J. Appl. Phys. 56, 147 (1984).
42Horache, E., Fischer, J.E. and van der Spiegel, J., Niobium disilicide formation by rapid thermal processing: Resistivity-grain growth correlation and the role of native oxide. J. Appl. Phys. 68, 4652 (1990).
43Incropera, F.P. and DeWitt, D.P., Introduction to heat transfer (John Wiley & Sons Publishers, New York, 1996).

Keywords

Related content

Powered by UNSILO

Ignition mechanism of mechanically activated Me–Si(Me = Ti, Nb, Mo) mixtures

  • U. Anselmi-Tamburini (a1), F. Maglia (a2), S. Doppiu (a3), M. Monagheddu (a3), G. Cocco (a3) and Z.A. Munir (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.