Skip to main content Accessibility help
×
Home

Identification of viscoplastic material parameters from spherical indentation data: Part II. Experimental validation of the method

  • D. Klötzer (a1), Ch. Ullner (a1), E. Tyulyukovskiy (a2) and N. Huber (a2)

Abstract

A neural network-based analysis method for the identification of a viscoplasticity model from spherical indentation data, developed in the first part of this work [J. Mater. Res.21, 664 (2006)], was applied for different metallic materials. Besides the comparison of typical parameters like Young’s modulus and yield stress with values from tensile experiments, the uncertainties in the identified material parameters representing modulus, hardening behavior, and viscosity were investigated in relation to different sources. Variations in the indentation position, tip radius, force application rate, and surface preparation were considered. The extensive experimental validation showed that the applied neural networks are very robust and show small variation coefficients, especially regarding the important parameters of Young’s modulus and yield stress. On the other hand, important requirements were quantified, which included a very good spherical indenter geometry and good surface preparation to obtain reliable results.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: christian.ullner@bam.de

References

Hide All
1.Huber, N., Tsakmakis, Ch.: An experimental device for depth-sensing indentation tests in mm-scale. J. Mater. Res. 13, 1650 (1998).
2.Kucharski, S. and Mróz, Z.: Identification of hardening parameters of metals from spherical indentation tests. Trans. ASME, J. Eng. Mater. Technol. 123, 245 (2001).
3.Nayebi, A., Abdi, R. El, Bartier, O., Mauvoisin, G.: New procedure to determine steel mechanical parameters from the spherical indentation technique. Mech. Mater. 34, 243 (2002).
4.Huber, N., Tyulyukovskiy, E.: A new loading history for identification of viscoplastic properties by spherical indentation. J. Mater. Res. 19, 101 (2004).
5.Kucharski, S. and Mróz, Z.: Identification of material parameters by means of compliance moduli in spherical indentation test. Mater. Sci. Eng. A, Struct. Mater. 379, 448 (2004).
6.Tyulyukovskiy, E., Huber, N.: Identification of viscoplastic material parameters from spherical indentation data: Part I. Neutral networks. J. Mater. Res. 21, 664 (2006).
7. ISO standard 14577: Metallic materials—Instrumented indentation test for hardness and materials parameter; October 2003, -part 1: Test method, -part 2: Verification and calibration of the testing machine, -part 3: Calibration of reference test pieces.
8.Field, J.S., Swain, M.V.: Determining the mechanical properties of small volumes of material from submicrometer spherical indentations. J. Mater. Res. 10, 101 (1995).
9.Ahn, J-H., Kwon, D.: Derivation of plastic stress-strain relationship from ball indentations. J. Mater. Res. 16, 3170 (2001).
10.Dao, M., Chollacoop, N., Van Vliet, K.J., Venkatesh, T.A., Suresh, S.: Computational modeling of the forward and reverse problems in instrumented sharp indentation. Acta Materialia. 49, 3899 (2001).
11.Cheng, Y-T., Cheng, C-M.: Scaling, dimensional analysis, and indentation measurements dimensional analysis, and indentation measurements. Mater. Sci. Eng. R 44, 91 (2004).
12.Huber, N., Tsakmakis, Ch.: Determination of constitutive properties from spherical indentation data using neural networks, Part II: Plasticity with nonlinear isotropic and kinematic hardening. J. Mech. Phys. Solids . 47, 1589 (1999).
13.Huber, N., Tsakmakis, Ch.: A neural network tool for identifying the material parameters of a finite deformation viscoplasticity model with static recovery. Comp Methods Appl. Mech. Eng. 191, 353 (2001).
14.Oliver, W.C., Pharr, G.M.: An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 7, 1564 (1992).
15.Tabor, D.: Hardness of Metals (Cambridge University Press Cambridge 1951).

Keywords

Identification of viscoplastic material parameters from spherical indentation data: Part II. Experimental validation of the method

  • D. Klötzer (a1), Ch. Ullner (a1), E. Tyulyukovskiy (a2) and N. Huber (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed