Skip to main content Accessibility help

Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials

  • Hemjyoti Kalita (a1) and Niranjan Karak (a1)


Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube (Fe3O4-MWCNT) nanocomposites were prepared by the in situ polymerization technique. The presence of Fe3O4 nanoparticles on the surface of the MWCNTs was confirmed by x-ray diffraction and transmission electron microscopic studies. The saturation magnetization value of Fe3O4-MWCNT was 0.23 emu/g. The glycidyl ether of bisphenol-A epoxy cured thermosetting nanocomposites exhibited enhanced tensile strength (6.4–38.5 MPa), scratch hardness (3.0–8.5 kg), and thermal stability (241–292 °C) with the increase of loading of Fe3O4-MWCNT (0–2 wt%). The nanocomposites possess good shape fixity over the repeated cycles of test. The nanocomposites also showed good shape recovery under the application of microwave irradiation. The shape recovery speed was found to be increased with the increase of the content of Fe3O4-MWCNT. Thus, the studied thermosetting nanocomposites have potential to be used as noncontact shape memory materials.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Small, W., Singhal, P., Wilson, T.S., and Maitland, D.J.: Biomedical applications of thermally activated shape memory polymer. J. Mater. Chem. 20, 3356 (2010).
2.Lee, K.M., Koerner, H., Vaia, R.A., Bunning, T.J., and White, T.J.: Light-activated shape memory of glassy, azobenzene liquid crystalline polymer networks. Soft Matter 7, 4318 (2011).
3.Yakacki, C.M.: Shape-memory and shape-changing polymers. Polym. Rev. 53, 1 (2013).
4.Lee, H.F., and Yu, H.H.: Study of electroactive shape memory polyurethane–carbon nanotube hybrids. Soft Matter 7, 3801 (2011).
5.Cai, Y., Jiang, J.S., Zheng, B., and Xie, M.R.: Synthesis and properties of magnetic sensitive shape memory Fe3O4/poly(ε-caprolactone)-polyurethane nanocomposites. J. Appl. Polym. Sci. 127, 49 (2013).
6.Haghayegh, M. and Sadeghi, G.M.M.: Synthesis of shape memory polyurethane/clay nanocomposites and analysis of shape memory, thermal, and mechanical properties. Polym. Compos. 33, 843 (2012).
7.Jang, M.K., Hartwig, A., and Kim, B.K.: Shape memory polyurethanes cross-linked by surface modified silica particles. J. Mater. Chem. 19, 1166 (2009).
8.Rousseau, I.A.: Challenges of shape memory polymers: A review of the progress toward overcoming SMP's limitations. Polym. Eng. Sci. 48, 2075 (2008).
9.Cuevas, J.M., Rubio, R., Laza, J.M., Vilas, J.L., Rodriguez, M., and Leon, L.M.: Shape memory composites based on glass-fibre-reinforced poly(ethylene)-like polymers. Smart Mater. Struct. 21, 035004 (2012).
10.Xu, J., Shi, W., and Pang, W.: Synthesis and shape memory effects of Si–O–Si cross-linked hybrid polyurethanes. Polymer 47, 457 (2006).
11.Zhang, C.S., and Ni, Q.Q.: Bending behavior of shape memory polymer based laminates Compos. Struct. 78, 153 (2007).
12.Deka, H. and Karak, N.: Shape-memory property and characterization of epoxy resin-modified Mesua ferrea L. seed oil-based hyperbranched polyurethane. J. Appl. Polym. Sci. 116, 106 (2010).
13.Rajasekaran, R. and Alagar, M.: Mechanical properties of bismaleimides modified polysulfone epoxy matrices. Int. J. Polym. Mater. 56, 911 (2007).
14.Unnikrishnan, K.P. and Thachil, E.T.: Toughening of epoxy resins. Des. Monomers Polym. 9, 129 (2006).
15.Hemmati, M., Narimani, A., Shariatpanahi, H., Fereidoon, A., and Ahangari, M.G.: Study on morphology, rheology and mechanical properties of thermoplastic elastomer polyolefin (TPO)/carbon nanotube nanocomposites with reference to the effect of polypropylene-grafted-maleic anhydride (PP-g-MA) as a compatibilizer. Int. J. Polym. Mater. 60, 384 (2011).
16.Rahmat, M. and Hubert, P.: Carbon nanotube–polymer interactions in nanocomposites: A review. Compos. Sci. Technol. 72, 72 (2011).
17.Wang, Y.T., Wang, C.S., Yin, H.Y., Wang, L.L., Xie, H.F., and Cheng, R.S.: Carboxyl-terminated butadiene-acrylonitrile-toughened epoxy/carboxyl-modified carbon nanotube nanocomposites: Thermal and mechanical properties. Express Polym. Lett. 6, 719 (2012).
18.Zhao, J.C., Du, F.P., Zhou, X.P., Cui, W., Wang, X.M., Zhu, H., Xie, X.L., and Mei, Y.W.: Thermal conductive and electrical properties of polyurethane/hyperbranched poly(urea-urethane)-grafted multi-walled carbon nanotube composites. Composites Part B 42, 2111 (2011).
19.Taheri, S., Nakhlband, E., and Nazockdast, H.: Microstructure and multiwall carbon nanotube partitioning in polycarbonate/acrylonitrile-butadiene-styrene/multiwall carbon nanotube nanocomposites. Polym. Plast. Technol. Eng. 52, 300 (2013).
20.Sahoo, N.G., Rana, S., Cho, J.W., Li, L., and Chan, S.H.: Polymer nanocomposites based on functionalized carbon nanotubes. Prog. Polym. Sci. 35, 837 (2010).
21.Song, P., Shen, Y., Du, B., Guo, Z., and Fang, Z.: Fabrication of fullerene-decorated carbon nanotubes and their application in flame-retarding polypropylene. Nanoscale 1, 118 (2009).
22.Khanderi, J., Hoffmann, R.C., Gurlo, A., and Schneider, J.J.: Synthesis and sensoric response of ZnO decorated carbon nanotubes. J. Mater. Chem. 19, 5039 (2009).
23.Zhang, Q., Zhu, M., Zhang, Q., Li, Y., and Wang, H.: The formation of magnetite nanoparticles on the sidewalls of multi-walled carbon nanotubes. Compos. Sci. Technol. 69, 633 (2009).
24.Kong, L., Lu, X., and Zhang, W.: Facile synthesis of multifunctional multiwalled carbon nanotubes/Fe3O4 nanoparticles/polyaniline composite nanotubes. J. Solid State Chem. 181, 628 (2008).
25.Li, H.Y., Chang, C.M., Hsu, K.Y., and Liu, Y.L.: Poly(lactide)-functionalized and Fe3O4 nanoparticle-decorated multiwalled carbon nanotubes for preparation of electrically-conductive and magnetic poly(lactide) films and electrospun nanofibers. J. Mater. Chem. 22, 4855 (2012).
26.Zhan, Y., Zhao, R., Lei, Y., Meng, F., Zhong, J., and Liu, X.: A novel carbon nanotubes/Fe3O4 inorganic hybrid material: Synthesis, characterization and microwave electromagnetic properties. J. Magn. Magn. Mater. 323, 1006 (2011).
27.Ni, S., Lin, S., Pan, Q., Yang, F., Huang, K., and He, D.: Hydrothermal synthesis and microwave absorption properties of Fe3O4 nanocrystals. J. Phys. D: Appl. Phys. 42, 055004 (2009).
28.Dutta, S. and Karak, N.: Effect of the NCO/OH ratio on the properties of Mesua Ferrea L. seed oil-modified polyurethane resins. Polym. Int. 55, 49 (2006).
29.Kalita, H. and Karak, N.: Mesua ferrea L. seed oil-based hyperbranched shape memory polyurethanes: Effect of multifunctional component. Polym. Eng. Sci. 52, 2454 (2012).
30.Jung, Y.C., So, H.H., and Cho, J.W.: Water-responsive shape memory polyurethane block copolymer modified with polyhedral oligomeric silsesquioxane. J. Macromol. Sci. Phys. 45, 453 (2006).
31.Zhang, Y., Heath, R.J., and Hourston, D.J.: Morphology, mechanical properties, and thermal stability of polyurethane–epoxide resin interpenetrating polymer network rigid foams. J. Appl. Polym. Sci. 75, 406 (2000).
32.Desai, S.D., Emanuel, A.L., and Sinha, V.K.: Polyester polyol-based polyurethane adhesive; effect of treatment on rubber surface. J. Polym. Res. 10, 141 (2003).
33.Thakur, S. and Karak, N.: Green reduction of graphene oxide by aqueous phytoextracts. Carbon 50, 5331 (2012).
34.Park, J.O., Rhee, K.Y., and Park, S.J.: Silane treatment of Fe3O4 and its effect on the magnetic and wear properties of Fe3O4/epoxy nanocomposites. Appl. Surf. Sci. 256, 6945 (2010).
35.Deka, H., Karak, N., Kalita, R.D., and Buragohain, A.K.: Biocompatible hyperbranched polyurethane/multi-walled carbon nanotube composites as shape memory materials. Carbon 48, 2013 (2010).
36.Kalita, H. and Karak, N.: Bio-based hyperbranched polyurethane/Fe3O4 nanocomposites as shape memory materials. Polym. Adv. Technol. doi: 10.1002/pat.3149.
37.Rana, S., Karak, N., Cho, J.W., and Kim, Y.H.: Enhanced dispersion of carbon nanotubes in hyperbranched polyurethane and properties of nanocomposites. Nanotechnology 19, 495707 (2008).
38.Yadav, S.K., Mahapatra, S.S., and Cho, J.W.: Synthesis of mechanically robust antimicrobial nanocomposites by click coupling of hyperbranched polyurethane and carbon nanotubes. Polymer 53, 2023 (2012).
39.Mahapatra, S.S., Yadav, S.K., Yoo, H.J., Cho, J.W., and Park, J.S.: Highly branched polyurethane: Synthesis, characterization and effects of branching on dispersion of carbon nanotubes. Composites Part B 45, 165 (2013).
40.Viry, L., Mercader, C., Miaudet, P., Zakri, C., Derre, A., Kuhn, A., Maugey, M., and Poulin, P.: Nanotube fibers for electromechanical and shape memory actuators. J. Mater. Chem. 20, 3487 (2010).
41.Zhou, W., Hu, X., Bai, X., Zhou, S., Sun, C., Yan, J., and Chen, P.: Synthesis and electromagnetic, microwave absorbing properties of core–shell Fe3O4–poly(3, 4-ethylenedioxythiophene) microspheres. ACS Appl. Mater. Interfaces 3, 3839 (2011).

Related content

Powered by UNSILO

Hyperbranched polyurethane/Fe3O4 nanoparticles decorated multiwalled carbon nanotube thermosetting nanocomposites as microwave actuated shape memory materials

  • Hemjyoti Kalita (a1) and Niranjan Karak (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.