Skip to main content Accessibility help

Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates

  • Alexej Michailovski (a1), Michael Wörle (a1), Denis Sheptyakov (a2) and Greta R. Patzke (a1)


In the course of a systematic field study, anisotropic alkali and alkaline earth vanadates have been accessed through a straightforward, one-step hydrothermal process. They are formed quantitatively from V2O5 and alkali- or alkaline earth halide solutions after a few days of autoclave treatment in the temperature range between 100 and 220 °C. The presence of ionic additives leads to an interplay between the formation of isotropic crystalline phases and the production of fibrous oxide materials, such as a novel magnesium vanadate. The influence of the hydrothermal parameters and of the alkali/alkaline earth halides on the emerging phases and morphologies has been investigated in the course of a systematic study. The results are compared with other vanadate- and transition metal oxide-based hydrothermal systems, and the emerging trends are discussed with respect to the development of predictive synthetic concepts for nanostructured vanadium oxides.


Corresponding author

a) Address all correspondence to this author. e-mail: This paper was selected as the outstanding meeting paper for the 2005 MRS Spring Meeting Symposium Y Proceedings, Vol. 878E.


Hide All
1The Chemistry of Nanostructured Materials edited by Yang, P. (World Scientific Publishers, Singapore, 2003).
2Patzke, G.R., Krumeich, F., and Nesper, R.: Oxidic nanotubes and nanorods—anisotropic materials for a future nanotechnology. Angew. Chem. Int. Ed. Engl. 41, 2446 (2002).
3Michailovski, A., Grunwaldt, J-D., Baiker, A., Kiebach, R., Bensch, W., and Patzke, G.R.: Studying the solvothermal formation of MoO3 fibers by complementary in situ EXAFS/EDXRD techniques. Angew. Chem. Int. Ed. Engl. 44, 5643 (2005).
4Niederberger, M., Krumeich, F., Muhr, H-J., Müller, M., and Nesper, R.: Synthesis and characterization of novel nanoscopic molybdenum oxide fibers. J. Mater. Chem. 11, 1941 (2001).
5Chirayil, T., Zavalij, P.Y., and Whittingham, M.S.: Hydrothermal synthesis of vanadium oxides. Chem. Mater. 10, 2629 (1998).
6Livage, J.: Vanadium pentoxide gels. Chem. Mater. 3, 578 (1991).
7Wang, Y. and Cao, G.: Synthesis and enhanced intercalation properties of nanostructured vanadium oxides. Chem. Mater. 18, 2787 (2006).
8Whittingham, M.S., Song, Y., Lutta, S., Zavalij, P.Y., and Chernova, N.A.: Some transition metal (oxy)phosphates and vanadium oxides for lithium batteries. J. Mater. Chem. 15, 3362 (2005).
9Zavalij, P.Y. and Whittingham, M.S.: Structural chemistry of vanadium oxides with open frameworks. Acta Crystallogr. B55, 627 (1999).
10Hagrman, P.J., Finn, R.C., and Zubieta, J.: Molecular manipulation of solid state structure: Influences of organic components on vanadium oxide architectures. Solid State Sci. 3, 745 (2001).
11Catlow, C.R.A., Gay, D.H., Rohl, A.L., and Sayle, D.C.: Simulating the structures of crystals and their surfaces. Top. Catal. 3, 135 (1996).
12Rao, C.N.R. and Raveau, B.: Transition Metal Oxides (VCH Publishers, New York, 1995).
13Boulet, P., Baiker, A., Chermette, H., Gilardoni, F., Volta, J.C., and Weber, J.: Oxidation of methanol to formaldehyde catalyzed by V2O5. A density functional study. J. Phys. Chem. B 37, 9659 (2002).
14Spengler, J., Anderle, F., Bosch, E., Grasselli, R.K., Pillep, B., Behrens, P., Lapina, O.B., Shubin, A.A., Eberle, H.J., and Knozinger, H.: Antimony oxide-modified vanadia-based catalysts—Physical characterization and catalytic properties. J. Phys. Chem. B 105, 10772 (2001).
15Spahr, M.E., Stoschitzki-Bitterli, P., Nesper, R., Haas, O., and Novak, P.: Vanadium oxide nanotubes—A new nanostructured redox-active material for the electrochemical insertion of lithium. J. Electrochem. Soc. 146, 2780 (1999).
16Stark, W.J., Wegner, K., Pratsinis, S.E., and Baiker, A.: Flame aerosol synthesis of vanadia-titania nanoparticles: Structural and catalytic properties in the selective catalytic reduction of NO by NH3. J. Catal. 197, 182 (2001).
17Feldmann, C.: Polyol-mediated synthesis of nanoscale functional materials. Adv. Funct. Mater. 13, 101 (2003).
18Krumeich, F., Muhr, H-J., Niederberger, M., Bieri, F., Schnyder, B., and Nesper, R.: Morphology and topochemical reactions of novel vanadium oxide nanotubes. J. Am. Chem. Soc. 121, 8324 (1999).
19Liu, X., Taschner, C., Leonhardt, A., Rummeli, M.H., Pichler, T., Gemming, T., Buchner, B., and Knupfer, M.: Structural, optical, and electronic properties of vanadium oxide nanotubes. Phys. Rev. B 72, 115407 (2005).
20Gui, Z., Fan, R., Mo, W., Chen, X., Yang, L., Zhang, S., Hu, Y., Wang, Z., and Fan, W.: Precursor morphology controlled formation of rutile VO2 nanorods and their self-assembled structure. Chem. Mater. 14, 5053 (2002).
21Watanabe, T., Cho, W-S., Suchanek, W.L., Endo, M., Ikuma, Y., and Yoshimura, M.: Direct fabrication of crystalline vanadates films by hydrothermal-electrochemical method. Solid State Sci. 3, 183 (2001).
22Chirayil, T.A., Zavalij, P.Y., and Whittingham, M.S.: A new vanadium dioxide cathode. J. Electrochem. Soc. 143, L193 (1996).
23Chirayil, T., Zavalij, P.Y., and Whittingham, M.S.: Hydrothermal synthesis and characterization of “LixV2-δO4-δH2O”. Solid State Ionics 84, 163 (1996).
24Xu, H.Y., Wang, H., Song, Z.Q., Wang, Y.W., Yan, H., and Yoshimura, M.: Novel chemical method for synthesis of LiV3O8 nanorods as cathode material for lithium ion batteries. Electrochim. Acta 49, 349 (2004).
25Ozawa, K., Wang, L., Fujii, H., Eguchi, M., Hase, M., and Yamaguchi, H.: Preparation and electrochemical properties of the layered material of LixVyO2 (x = 0.86 and y = 0.8). J. Electrochem. Soc. 153 (1), A 117 (2006).
26Oka, T., Oka, Y., and Yamamoto, N.: Layered structures of hydrated vanadium oxides—Part 1. J. Mater. Chem. 2(3), 331 (1992).
27Wu, X., Tao, Y., Dong, L., and Hong, J.: Synthesis and characterization of self-assembling (NH4)0.5V2O5. J. Mater. Chem. 14, 901 (2004).
28Oka, Y., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and structure refinements of alkali-metal trivanadates AV3O8 (A = K, Rb, Cs). Mater. Res. Bull. 32, 1201 (1997).
29Oka, Y., Yao, T., Yamamoto, N., and Tamada, O.: Hydrothermal synthesis of vanadium oxide bronzes MxV3O8(VO)y⋅nH2O (M = K, Rb, Ba). Mater. Res. Bull. 32, 59 (1997).
30Oka, Y., Yao, T., and Yamamoto, N.: Layered structures of hydrated vanadium oxides—Part 4. J. Mater. Chem. 5(9), 1423 (1995).
31Xu, H., He, W., Wang, H., and Yan, H.: Solvothermal synthesis of K2V3O8 nanorods. J. Cryst. Growth 260, 447 (2004).
32Shi, F-N., Rocha, J., Lopes, A.B., and Trinidade, T.: Morphological micro-patterning of tubular-windows on crystalline K2V3O8 sheets. J. Cryst. Growth 273, 572 (2005).
33Yao, T., Oka, Y., and Yamamoto, N.: Layered structures of hydrated vanadium oxides—Part 5. J. Mater. Chem. 6(7), 1195 (1996).
34Oka, Y., Saito, F., Yao, T., and Yamamoto, N.: Crystal structure of Cs2V4O11 with unusual V-O coordinations. J. Solid State Chem. 134, 52 (1997).
35Ushio, M.: Hydrothermal synthesis of fibrous calcium vanadate crystal in the system CaO-V2O5-H2O. Nippon Kagaku Kaishi 2, 185 (1979).
36Oka, Y., Yao, T., and Yamamoto, N.: Crystal structures of hydrated vanadium oxides with δ-type V2O5 layers: δ-M0.25V2O5⋅H2O; M = Ca, Ni. J. Solid State Chem. 132, 323 (1997).
37Oka, Y., Yao, T., Yamamoto, N., Ueda, M., and Maegawa, S.: Synthesis and crystal structure of SrV4O9 in a metastable state. J. Solid State Chem. 149, 414 (2000).
38Yao, T., Oka, Y., and Yamamoto, N.: Structure refinement of barium metavanadate BaV2O6. Inorg. Chim. Acta 238, 165 (1995).
39Oka, Y., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of BaV3O8. J. Solid State Chem. 137, 407 (1995).
40Oka, Y., Tamada, O., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of a novel barium vanadium oxide: Ba0.4V3O8(VO)0.4⋅nH2O. J. Solid State Chem. 114, 359 (1995).
41Oka, Y., Yao, T., Sato, S., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of barium hewettite: BaV6O16⋅nH2O. J. Solid State Chem. 140, 219 (1998).
42Wang, X., Liu, L., Bontchev, R., and Jacobson, A.J.: Electrochemicalhydrothermal synthesis and structure determination of a novel layered mixed-valence oxide: BaV7O16⋅nH2O. Chem. Commun. 1009 (1998).
43Oka, Y., Yao, T., and Yamamoto, N.: Hydrothermal synthesis and crystal structure of a new barium vanadium bronze Ba1+xV8O21 with a tunnel structure. J. Solid State Chem. 150, 330 (2000).
44Kanke, Y., Oka, Y., and Yao, T.: Hydrothermal synthesis and crystal structure of Ba6[V10O30(H2O)]⋅2.5H2O with an unusual arrangement of VIV-O polyhedra. J. Solid State Chem. 151, 130 (2000).
45Zhang, H., Yang, D., Li, D., Ma, X., Li, S., and Que, D.: Controllable growth of ZnO microcrystals by a capping-molecule-assisted hydrothermal process. Cryst. Growth Design 5, 547 (2005).
46Michailovski, A., Krumeich, F., and Patzke, G.R.: Solvothermal morphology studies: Alkali and alkaline earth molybdates. Helv. Chim. Acta 87, 1029 (2004).
47Michailovski, A. and Patzke, G. R.: (in preparation).
48Behrens, P., Glaue, A., Haggenmuller, C., and Schechner, G.: Structure-directed materials syntheses: Synthesis field diagrams for the preparation of mesostructured silicas. Solid State Ionics 101, 255 (1997).
49Pausewang, G. and Dehnicke, K.: Alkaline oxofluoro metalates of transition metals II. Structure of some oxide fluorides with pentavalent vanadium. Z. Anorg. Allg. Chem. 369, 265 (1969).
50Mattes, R. and Foerster, H.: The crystal structure of green Cs2[VOF4(H2O)] and its relationship to blue Cs2[VOF4(H2O)]. J. Solid State Chem. 45, 154 (1982).
51Evans, H.T., Post, J.E., Ross, D.R., and Nelen, J.A.: The crystal structure and crystal chemistry of fernandinite and corvusite. Can. Mineral. 32, 339 (1994).
52Evans, H.T. and Hughes, J.M.: Crystal chemistry of the natural vanadium bronzes. Am. Mineral. 75, 508 (1990).
53West, A.R. and Glasser, F.P.: Preparation and crystal chemistry of some tetrahedral Li3PO4-type compounds. J. Solid State Chem. 4, 20 (1972).
54Weeks, A.D., Ross, D.R., and Marvin, R.F.: Occurrence and properties of barnesite—Na2V6O16·3H2O. A new hydrated sodium vanadate mineral from Utah. Am. Mineral. 48, 1187 (1963).
55Evans, H.T.: The crystal structure of hewettite. Can. Mineral. 27, 181 (1989).
56Wadsley, A.D.: Crystal chemistry of non-stoichiometric pentavalent vanadium oxides—crystal structure of Li1+xV3O8. Acta Crystallogr. 10, 261 (1957).
57Joanneau, S., Verbaere, A., Lascaud, S., and Guyomard, D.: Improvement of the lithium insertion properties of Li1.1V3O8. Solid State Ionics 177, 311 (2006).
58Bachmann, H.G. and Barnes, W.H.: The crystal structure of a sodium-calcium variety of metahewettite. Can. Mineral. 7, 219 (1962).
59Zhou, G-T., Wang, X., and Yu, J.C.: Selected-control synthesis of NaV6O15 and Na2V6O16·3H2O single-crystalline nanowires. Cryst. Growth Design 5, 969 (2005).
60Pistorius, C.W.: Polymorphism and stability of some sodium cryolites to high pressures. J. Solid State Chem. 13, 208 (1975).
61Hughes, J.M. and Finger, L.W.: Bannermanite, a new sodium-potassium vanadate isostructural with β-NaxV6O15. Am. Mineral. 68, 634 (1983).
62Wadsley, A.D.: The crystal structure of Na2-xV6O15. Acta Crystallogr. 8, 695 (1955).
63Livage, J.: Synthesis of polyoxovanadates via “chimie douce”. Coord. Chem. Rev. 178, 999 (1998).
64Kato, K., Kanke, Y., Oka, Y., and Yao, T.: Crystal structure of zinc hydroxide sulfate vanadate(V), Zn7(OH)3(SO4)(VO4)3. Z. Krist. 213, 26 (1998).
65Rodríguez-Carvajal, J.: Recent advantages in magnetic structure determination by neutron powder diffraction. Physica B (Amsterdam) 192, 55 (1993).
66Isaguliants, G. and Belomestnykh, I.P.: Selective oxidation of methanol to formaldehyde over V-Mg-O catalysts. Catal. Today 100, 441 (2005).
67Schnuriger, B., Enjalbert, R., Savariault, J.M., and Galy, J.: Synthesis and crystal structure of β-SrV2O6. J. Solid State Chem. 95, 397 (1991).
68Jordan, B.D. and Calvo, C.: Crystal structure of lead metavanadate, PbV2O6. Can. J. Chem. 52, 2701 (1974).
69Ulická, L., Pavelčik, F., and Huml, K.: Structure of barium meta-vanadate monohydrate. Acta Crystallogr. C 43, 2266 (1987).
70Zurková, L., Čorba, J., and Suchá, V.: Preparation of crystalline Ba(VO3)2·H2O and some of its physico-chemical properties. Chem. Zvesti. 22, 73 (1968).
71Jolivet, J-P., Henry, M., and Livage, J.: Metal Oxide Chemistry and Synthesis: From Solution to Solid State (John Wiley & Sons, Chichester, UK, 2000).
72Michailovski, A., Willems, J.B., Stock, N., and Patzke, G.R.: Solvothermal synthesis and crystal structures of alkali molybdates. Helv. Chim. Acta 88, 2479 (2005).
73Michailovski, A., Krumeich, F., and Patzke, G.R.: Solvothermal synthesis of hierarchically structured pyrochlore ammonium tungstate nanospheres. Mater. Res. Bull. 39, 887 (2004).
74Michailovski, A., Kiebach, R., Bensch, W., Grunwaldt, J-D., Baiker, A., Komarneni, S., and Patzke, G.R.: Morphological and kinetic studies on hexagonal tungstates. Chem. Mater. (submitted).
75Michailovski, A., Krumeich, F., and Patzke, G.R.: Hierarchical growth of mixed ammonium molybdenum/tungsten bronze nanorods. Chem. Mater. 16, 1433 (2004).


Hydrothermal synthesis of anisotropic alkali and alkaline earth vanadates

  • Alexej Michailovski (a1), Michael Wörle (a1), Denis Sheptyakov (a2) and Greta R. Patzke (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed