Skip to main content Accessibility help

Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion

  • Donald F. Johnson (a1) and Emily A. Carter (a2)


Understanding the interaction between atomic hydrogen and solid tungsten is important for the development of fusion reactors in which proposed tungsten walls would be bombarded with high energy particles including hydrogen isotopes. Here, we report results from periodic density-functional theory calculations for three crucial aspects of this interaction: surface-to-subsurface diffusion of H into W, trapping of H at vacancies, and H-enhanced decohesion, with a view to assess the likely extent of hydrogen isotope incorporation into tungsten reactor walls. We find energy barriers of (at least) 2.08 eV and 1.77 eV for H uptake (inward diffusion) into W(001) and W(110) surfaces, respectively, along with very small barriers for the reverse process (outward diffusion). Although H dissolution in defect-free bulk W is predicted to be endothermic, vacancies in bulk W are predicted to exothermically trap multiple H atoms. Furthermore, adsorbed hydrogen is predicted to greatly stabilize W surfaces such that decohesion (fracture) may result from high local H concentrations.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Toschi, R., Barabaschi, P., Campbell, D., Elio, F., Maisonnier, D., Ward, D.How far is a fusion power reactor from an experimental reactor. Fusion Eng. Des. 56–57, 163 (2001)
2.Bolt, H., Barabash, V., Krauss, W., Linke, J., Neu, R., Suzuki, S., Yoshida, N.Materials for the plasma-facing components of fusion reactors. J. Nucl. Mater. 329–33, 66 (2004)
3.Condon, J.B., Schober, T.Hydrogen bubbles in metals. J. Nucl. Mater. 207, 1 (1993)
4.Naujoks, D., Asmussen, K., Bessenrodt-Weberpals, M., Deschka, S., Dux, R., Engelhardt, W., Field, A.R., Fussmann, G., Fuchs, J.C., García-Rosales, C., Hirsch, S., Ignacz, P., Lieder, G., Mast, K.F., Neu, R., Radtke, R., Roth, J., Wenzel, U.Tungsten as target material in fusion devices. Nucl. Fusion 36, 671 (1996)
5.Kaufmann, M., Neu, R.Tungsten as first wall material in fusion devices. Fusion Eng. Des. 82, 521 (2007)
6.Serra, E., Benamati, G., Ogorodnikova, O.V.Hydrogen isotopes transport parameters in fusion reactor materials. J. Nucl. Mater. 255, 105 (1998)
7.Shu, W.M., Kawasuso, A., Miwa, Y., Wakai, E., Luo, G.N., Yamanishi, T.Microstructure dependence of deuterium retention and blistering in the near-surface region of tungsten exposed to high flux deuterium plasmas of 38 eV at 315K. Phys. Scr. T. 128, 96 (2007)
8.Alimov, V.K., Roth, J., Mayer, M.Depth distribution of deuterium in single- and polycrystalline tungsten up to depths of several micrometers. J. Nucl. Mater. 337, 619 (2005)
9.Poon, M., Macaulay-Newcombe, R.G., Davis, J.W., Haasz, A.A.Effects of background gas impurities during D+ irradiation on D trapping in single crystal tungsten. J. Nucl. Mater. 337, 629 (2005)
10.Felter, T.E., Barker, R.A., Estrup, P.J.Phase-transition on Mo(100) and W(100) surfaces. Phys. Rev. Lett. 38, 1138 (1977)
11.Debe, M.K., King, D.A.Clean thermally induced W[001](1 × 1)-]() R 45° surface-structure transition and its crystallography. Surf. Sci. 81, 193 (1979)
12.Barker, R.A., Estrup, P.J.Surface-structures and phase-diagram for the H-W(001) chemisorption system. J. Chem. Phys. 74, 1442 (1981)
13.King, D.A.Clean and adsorbate-induced surface phase-transitions on W(100). Phys. Scr. T. 4, 34 (1983)
14.Landskron, H., Bickel, N., Heinz, K., Schmidtlein, G., Muller, K.LEED intensity analysis of the clean W(100) C(2x2) surface reconstruction. J. Phys. Condens. Matter 1, 1 (1989)
15.Altman, M.S., Estrup, P.J., Robinson, I.K.Multilayer reconstruction of the W(001) surface. Phys. Rev. B 38, 5211 (1988)
16.Stensgaard, I., Feldman, L.C., Silverman, P.J.Reconstruction of the W(001) surface and its reordering by hydrogen adsorption, studied by MEV ion scattering. Phys. Rev. Lett. 42, 247 (1979)
17.Shin, K.S., Kim, H.W., Chung, J.W.Evidence for a driving mechanism of the W(001) reconstruction. Surf. Sci. 385, L978 (1997)
18.Yu, R., Krakauer, H., Singh, D.Equilibrium geometry and electronic-structure of the low-temperature W(001) surface. Phys. Rev. B 45, 8671 (1992)
19.Xu, W., Adams, J.B.Structure of 7 W-surfaces. Surf. Sci. 319, 45 (1994)
20.Meyerheim, H.L., Sander, D., Popescu, R., Steadman, P., Ferrer, S., Kirschner, J.Interlayer relaxation of W(110) studied by surface x-ray diffraction. Surf. Sci. 475, 103 (2001)
21.Arnold, M., Hupfauer, G., Bayer, P., Hammer, L., Heinz, K., Kohler, B., Scheffler, M.Hydrogen on W(110): An adsorption structure revisited. Surf. Sci. 382, 288 (1997)
22.Estrup, P.J., Anderson, J.Chemisorption of hydrogen on tungsten (100). J. Chem. Phys. 45, 2254 (1966)
23.Barker, R.A., Estrup, P.J.Hydrogen on tungsten (100) adsorbate induced surface reconstruction. Phys. Rev. Lett. 41, 1307 (1978)
24.King, D.A., Thomas, G.Displacive surface phases formed by hydrogen chemisorption on W(001). Surf. Sci. 92, 201 (1980)
25.Smith, A.H., Barker, R.A., Estrup, P.J.Desorption of hydrogen from tungsten (100). Surf. Sci. 136, 327 (1984)
26.Tamm, P.W., Schmidt, L.D.Binding states of hydrogen on tungsten. J. Chem. Phys. 54, 4775 (1971)
27.Plummer, E.W., Bell, A.E.Field-emission energy-distributions of hydrogen and deuterium on (100) and (110) planes of tungsten. J. Vac. Sci. Technol. 9, 583 (1972)
28.Restorff, J.B., Drew, H.D.Surface reflectance spectroscopy of hydrogen chemisorbed on W(100), W(110) and W(111). Surf. Sci. 88, 399 (1979)
29.Difoggio, R., Gomer, R.Diffusion of hydrogen and deuterium on the (110) plane of tungsten. Phys. Rev. B 25, 3490 (1982)
30.Wang, S.C., Gomer, R.Diffusion of hydrogen, deuterium, and tritium on the (110) plane of tungsten. J. Chem. Phys. 83, 4193 (1985)
31.Dharmadhikari, C., Gomer, R.Diffusion of hydrogen and deuterium on the (111) plane of tungsten. Surf. Sci. 143, 223 (1984)
32.Grizzi, O., Shi, M., Bu, H., Rabalais, J.W., Rye, R.R., Nordlander, P.Determination of the structure of hydrogen on a W(211) surface. Phys. Rev. Lett. 63, 1408 (1989)
33.Fink, H.W., Ehrlich, G.Lattice steps and adatom binding on W(211). Surf. Sci. 143, 125 (1984)
34.Flahive, P.G., Graham, W.R.Determination of single atom surface site geometry on W(111), W(211) and W(321). Surf. Sci. 91, 463 (1980)
35.Rye, R.R., Barford, B.D., Cartier, P.G.Chemisorption of H2 on W(211). J. Chem. Phys. 59, 1693 (1973)
36.Grimley, T.B., Torrini, M.Interaction between two hydrogen atoms adsorbed on (100) tungsten. J. Phys. C: Solid State Phys. 6, 868 (1973)
37.Henriksson, K.O.E., Vortler, K., Dreissigacker, S., Nordlund, K., Keinonen, J.Sticking of atomic hydrogen on the tungsten (001) surface. Surf. Sci. 600, 3167 (2006)
38.Zhang, J., Yu, Y.J., Wang, Z.X., Qin, W.N., Diao, Z.Y., Hao, C.Adsorption sites and states for H atom on W low-index surfaces. Acta Chim. Sinica 65, 785 (2007)
39.Busnengo, H.F., Martinez, A.E.H2 chemisorption on W(100) and W(110) surfaces. J. Phys. Chem. C 112, 5579 (2008)
40.Nojima, A., Yamashita, K.A theoretical study of hydrogen adsorption and diffusion on a W(110) surface. Surf. Sci. 601, 3003 (2007)
41.White, J.A., Bird, D.M., Payne, M.C.Dissociation of H2 on W(100). Phys. Rev. B 53, 1667 (1996)
42.Difoggio, R., Gomer, R.Tunneling of hydrogen in surface-diffusion on the tungsten-(110) plane. Phys. Rev. Lett. 44, 1258 (1980)
43.Kay, M., Darling, G.R., Holloway, S.Comparing quantum and classical dynamics: H2 dissociation on W(100). J. Chem. Phys. 108, 4614 (1998)
44.Frauenfelder, R.Solution and diffusion of hydrogen in tungsten. J. Vac. Sci. Technol. 6, 388 (1969)
45.Hayashi, Y., Shu, W.M.Iron (ruthenium and osmium)-hydrogen systems. Solid State Phenom. 73–75, 65 (2000)
46.Henriksson, K.O.E., Nordlund, K., Krasheninnikov, A., Keinonen, J.Difference in formation of hydrogen and helium clusters in tungsten. Appl. Phys. Lett. 87, 3 (2005)
47.Liu, Y.L., Zhang, Y., Luo, G.N., Lu, G.H.Structure, stability and diffusion of hydrogen in tungsten: A first-principles study. J. Nucl. Mater. 390–391, 1032 (2009)
48.Jónsson, H., Mills, G., Jacobsen, K.W.Nudged elastic band method for finding minimum energy paths of transitionsClassical and Quantum Dynamics in Condensed Phase Simulations edited by B.J. Berne, G. Ciccotti, and D.F. Coker (World Scientific, Singapore 1998)385
49.Picraux, S.T., Vook, F.L.Deuterium lattice location in Cr and W. Phys. Rev. Lett. 33, 1216 (1974)
50.Anderl, R.A., Holland, D.F., Longhurst, G.R., Pawelko, R.J., Trybus, C.L., Sellers, C.H.Deuterium transport and trapping in polycrystalline tungsten. Fusion Technol. 21, 745 (1992)
51.Wilson, K.L., Bastasz, R., Causey, R.A., Brice, D.K., Doyle, B.L., Wampler, W.R., Moller, W., Scherzer, B.M.U., Tanabe, T.Trapping, detrapping and release of implanted hydrogen isotopes. Nucl. Fusion 1, 31 (1991)
52.Poon, M., Haasz, A.A., Davis, J.W.Modelling deuterium release during thermal desorption of D+-irradiated tungsten. J. Nucl. Mater. 374, 390 (2008)
53.Venhaus, T.J., Causey, R.A.Analysis of thermal desorption spectra to understand the migration of hydrogen in tungsten. Fusion Technol. 39, 868 (2001)
54.Soltan, A.S., Vassen, R., Jung, P.Migration and immobilization of hydrogen and helium in gold and tungsten at low temperatures. J. Appl. Phys. 70, 793 (1991)
55.Fransens, J.R., Elkeriem, M.S.A., Pleiter, F.Hydrogen vacancy interaction in tungsten. J. Phys. Condens. Matter 3, 9871 (1991)
56.Liu, Y.L., Zhang, Y., Zhou, H.B., Lu, G.H., Liu, F., Luo, G.N.Vacancy trapping mechanism for hydrogen bubble formation in metal. Phys. Rev. B 79, 4 (2009)
57.Jiang, D.E., Carter, E.A.First principles assessment of ideal fracture energies of materials with mobile impurities: Implications for hydrogen embrittlement of metals. Acta Mater. 52, 4801 (2004)
58.Kresse, G., Furthmuller, J.Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 54, 11169 (1996)
59.Kresse, G., Furthmuller, J.Efficiency of ab-initio total energy calculations for metals and semiconductors using a plane-wave basis set. Comput. Mater. Sci. 6, 15 (1996)
60.Kresse, G., Joubert, D.From ultrasoft pseudopotentials to the projector augmented-wave method. Phys. Rev. B 59, 1758 (1999)
61.Blochl, P.E.Projector augmented-wave method. Phys. Rev. B 50, 17953 (1994)
62.Perdew, J.P., Burke, K., Ernzerhof, M.Generalized gradient approximation made simple. Phys. Rev. Lett. 77, 3865 (1996)
63.Methfessel, M., Paxton, A.T.High-precision sampling for brillouin-zone integration in metals. Phys. Rev. B 40, 3616 (1989)
64.Kwak, K.W., Chou, M.Y., Troullier, N.First-principles study of the H-induced reconstruction of W(110). Phys. Rev. B 53, 13734 (1996)
65.Kittel, C.Introduction to Solid State Physics 7th ed. (John Wiley & Sons, Inc., New York 2002)
66.Huber, K.P., Herzberg, G.Molecular Spectra and Molecular Structure IV: Constants of Diatomic Molecules (Van Norstrand Reinhold Co., New York 1979)
67.Vineyard, G.H.Frequency factors and isotope effects in solid state rate processes. J. Phys. Chem. Solids 3, 121 (1957)
68.Huntington, H.B., Shirn, G.A., Wajda, E.S.Calculation of the entropies of lattice defects. Phys. Rev. 99, 1085 (1955)
69.Harris, J., Andersson, S.H2 dissociation at metal surfaces. Phys. Rev. Lett. 55, 1583 (1985)
70.Wert, C., Zener, C.Interstitial atomic diffusion coefficients. Phys. Rev. 76, 1169 (1949)
71.Frauenfelder, R.Solution and diffusion of hydrogen in tungsten. J. Vacuum Sci. Technol. 6, 388 (1969)
72.Devita, A., Gillan, M.J.The ab initio calculation of defect energetics in aluminum. J. Phys. Condens. Matter 3, 6225 (1991)
73.Tateyama, Y., Ohno, T.Stability and clusterization of hydrogen vacancy complexes in alpha-Fe: An ab initio study. Phys. Rev. B 67, 174105 (2003)
74.Ramasubramaniam, A., Itakura, M., Carter, E.A.Interatomic potentials for hydrogen in alpha-iron based on density-functional theory. Phys. Rev. B 79, 174101 (2009)
75.Fukai, Y.Superabundant vacancies formed in metal-hydrogen alloys. Phys. Scr. T. 103, 11 (2003)
76.Fukai, Y., Okuma, N.Formation of superabundant vacancies in Pd hydride under high hydrogen pressures. Phys. Rev. Lett. 73, 1640 (1994)
77.Lu, G., Kaxiras, E.Hydrogen embrittlement of aluminum: The crucial role of vacancies. Phys. Rev. Lett. 94, 4 (2005)
78.Sorescu, D.C.First-principles calculations of the adsorption and diffusion of hydrogen on Fe(100) surface and in the bulk. Catal. Today 105, 44 (2005)
79.Luo, G.N., Shu, W.M., Nishi, M.Influence of blistering on deuterium retention in tungsten irradiated by high flux deuterium 10–100 eV plasmas. Fusion Eng. Des. 81, 957 (2006)
80.Momma, K., Izumi, F.VESTA: A three-dimensional visualization system for electronic and structural analysis. J. Appl. Crystallogr. 41, 653 (2008)


Hydrogen in tungsten: Absorption, diffusion, vacancy trapping, and decohesion

  • Donald F. Johnson (a1) and Emily A. Carter (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed