Hostname: page-component-848d4c4894-8bljj Total loading time: 0 Render date: 2024-07-02T01:39:15.011Z Has data issue: false hasContentIssue false

Hybrid carbon nanotubes: Strategy, progress, and perspectives

Published online by Cambridge University Press:  03 March 2011

M. Monthioux*
Affiliation:
Centre d’élaboration des Matériaux et d’Etudes Structurales, UPR-8011 CNRS, F-31055 Toulouse cedex 04, France
E. Flahaut
Affiliation:
Centre Interuniversitaire de Recherche et d’Innovation sur les Matériaux, UMR-5085 CNRS, F-31062 Toulouse, France
J-P. Cleuziou
Affiliation:
Centre d’élaboration des Matériaux et d’Etudes Structurales, UPR-8011 CNRS, F-31055 Toulouse cedex 04, France
*
a) Address all correspondence to this author. e-mail: marc.monthioux@cemes.fr
Get access

Abstract

We introduce the concept of meta-nanotubes, among which are hybrid carbon nanotubes (X@CNTs), which are CNTs whose hollow core is filled—fully or partially—with foreign atoms, molecules, or compounds. The article focuses on the latter, describing their potential interest and the various ways currently available to synthesize them, while providing examples of the resulting materials mainly taken from the author’s works but also from literature, as characterized by means of high-resolution microscopy and related techniques. We discuss advantages and drawbacks of the various synthesis routes to help willing scientists and engineers to define a strategy for X@CNT synthesis with respect to their specific goals and expectations. Some examples of peculiar properties and behaviors of X@CNTs will be provided as well, although such related investigations are still scarcely reported because we are dealing with quite new nanomaterials.

Type
Reviews
Copyright
Copyright © Materials Research Society 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Monthioux, M., Kuznetsov, V.: Who should be given the credit for the discovery of carbon nanotubes? Carbon 44, 1621 (2006).Google Scholar
2.Radushkevich, L.V., Lukyanovich, V.M.: On the structure of carbon formed by the thermal decomposition of carbon monoxide (CO) to the contact with iron. Russ. J. Phys. Chem. 26, 88 (1952) (in Russian).Google Scholar
3.Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363, 603 (1993).Google Scholar
4.Bethune, D.S., Kiang, C.H., De Vries, M.S., Gorman, G., Savoy, R., Vasquez, J., Breyers, R.: Cobalt catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature 363, 605 (1993).Google Scholar
5.Iijima, S.: Helical microtubules of graphite carbon. Nature 354, 56 (1991).Google Scholar
6.Chen, J., Hamon, M.A., Hu, H., Chen, Y., Rao, A.M., Eklund, P.C., Haddon, R.C.: Solution properties of singled-walled carbon nanotubes. Science 282, 95 (1998).CrossRefGoogle Scholar
7.Khabashesku, V.N., Billups, W.E., Margrave, J.L.: Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc. Chem. Res. 35, 1087 (2002).CrossRefGoogle ScholarPubMed
8.Sun, Y-P., Fu, K., Lin, Y., Huang, W.: Functionalized carbon nanotubes: Properties and applications. Acc. Chem. Res. 35, 1096 (2002).Google Scholar
9.Planeix, J.M., Coustel, N., Coq, B., Brotons, V., Kumbhar, P.S., Dutartre, R., Geneste, P., Bernier, P., Ajayan, P.M.: Application of carbon nanotubes as supports in heterogeneous catalysis. J. Am. Chem. Soc. 116, 7935 (1994).Google Scholar
10.Serp, P., Corrias, M., Kalck, P.: Carbon nanotubes and nanofibers in catalysis. Appl. Catal., A 253, 337 (2003).CrossRefGoogle Scholar
11.Ellis, A.V., Vijayamohanan, K., Goswami, R., Chakrapani, N., Ramanathan, L.S., Ajayan, P.M., Ramanath, G.: Hydrophobic anchoring of monolayer-protected gold nanoclusters to carbon nanotubes. Nano Lett. 3, 219 (2003).CrossRefGoogle Scholar
12.Terrones, M., Grobert, N., Terrones, H.: Synthetic routes to nanoscale Bx-Cy-Nz architectures. Carbon 40, 1665 (2002).Google Scholar
13.Lee, R.S., Kim, H.J., Fischer, J.E., Thess, A., Smalley, R.E.: Conductivity enhancement in K- and Br-doped nanotube bundles. Nature 388, 255 (1997).CrossRefGoogle Scholar
14.Fischer, J.E.: Chemical doping of single-wall carbon nanotubes. Acc. Chem. Res. 35, 1079 (2002).CrossRefGoogle ScholarPubMed
15.Brown, G., Bailey, S.R., Novotny, M., Carter, R., Flahaut, E., Coleman, K.S., Hutchison, J.L., Green, M.L.H., Sloan, J.: High yield incorporation and washing properties of halides incorporated into single walled carbon nanotubes. Appl. Phys. A 76, 457 (2003).CrossRefGoogle Scholar
16.Thamavaranukup, N., Höppe, H.A., Ruiz-Gonzalez, L., Costa, P.M.F.J., Sloan, J., Kirkland, A., Green, M.L.H.: Single-walled carbon nanotubes filled with M OH (M = K, Cs) and then washed and refilled with clusters and molecules. Chem. Commun. 1686 (2004).CrossRefGoogle Scholar
17.Ajayan, P.M., Lijima, S.: Capillarity-induced filling of carbon nanotubes. Nature 361, 333 (1993).CrossRefGoogle Scholar
18.Seraphin, S., Zhou, D., Jiao, J., Withers, J.C., Loufty, R.: Yttrium carbide in nanotubes. Nature 362, 503 (1993).Google Scholar
19.Ajayan, P.M., Ebbesen, T.W., Ichihashi, T., Iijima, S., Tanigaki, K., Hiura, H.: Opening carbon nanotubes with oxygen and implications for filling. Nature 362, 522 (1993).CrossRefGoogle Scholar
20.Saito, Y., Yoshikawa, T.: Bamboo-shaped carbon tube filled partially with nickel. J. Cryst. Growth 134, 154 (1993).Google Scholar
21.Smith, B.W., Monthioux, M., Luzzi, D.E.: Encapsulated C60 in carbon nanotubes. Nature 296, 323 (1998).CrossRefGoogle Scholar
22.Sloan, J., Hammer, J., Zwiefka-Sibley, M., Green, M.L.H.: The opening and filling of single walled carbon nanotubes (SWTs). Chem. Commun. 347 (1998).Google Scholar
23.Sloan, J., Kirkland, A.I., Hutchison, J.L., Green, M.L.H.: Integral atomic layer architectures of 1D crystals inserted into single walled carbon nanotubes. Chem. Commun. 1319 (2002).CrossRefGoogle Scholar
24.Sloan, J., Kirkland, A.I., Hutchison, J.L., Green, M.L.H.: Aspects of crystal growth within carbon nanotubes. C. R. Phys. 4, 1063 (2003).Google Scholar
25.Burteaux, B., Claye, A., Smith, B.W., Monthioux, M., Luzzi, D.E., Fischer, J.E.: Abundance of encapsulated C60 in single-wall carbon nanotubes. Chem. Phys. Lett. 310, 21 (1999).Google Scholar
26.Bendall, J.S., Ilie, A., Welland, M.E., Sloan, J., Green, M.L.H.: Thermal stability and reactivity of metal halide filled single-walled carbon nanotubes. J. Phys. Chem. 110, 6569 (2006).CrossRefGoogle ScholarPubMed
27.Sloan, J., Cook, J., Green, M.L.H., Hutchison, J.L., Tenne, R.: Crystallization inside fullerene-related structures. J. Mater. Chem. 7, 1089 (1997).CrossRefGoogle Scholar
28.Ugarte, D., Stöckli, T., Bonard, J.M., Châtelain, A., de Heer, W.A.: Filling carbon nanotubes. Appl. Phys. A 67, 101 (1998).Google Scholar
29.Dujardin, E., Ebbesen, T.W., Hiura, H., Taginaki, K.: Capillarity and wetting of carbon nanotubes. Science 265, 1850 (1994).CrossRefGoogle ScholarPubMed
30.Dujardin, E., Ebbesen, T.W., Krishnan, A., Treacy, M.M.J.: Wetting of single shell carbon nanotubes. Adv. Mater. 10, 1472 (1998).Google Scholar
31.Ugarte, D., Chatelain, A., de Heer, W.A.: Nanocapillarity and chemistry in carbon nanotubes. Science 274, 1897 (1996).CrossRefGoogle ScholarPubMed
32.Watts, P.C.P., Hsu, W.K., Kotzeva, V., Chen, G.Z.: Fe-filled carbon nanotube-polystyrene: RCL composites. Chem. Phys. Lett. 366, 42 (2002).CrossRefGoogle Scholar
33.Dai, J.Y., Lauerhaas, J.M., Setlur, A.A., Chang, R.P.H.: Synthesis of carbon-encapsulated nanowires using polycyclic aromatic hydrocarbon precursors. Chem. Phys. Lett. 258, 547 (1996).CrossRefGoogle Scholar
34.Rao, C.N.R., Sen, R., Satishkumar, B.C., Govindaraj, A.: Large aligned-nanotube bundles from ferrocene pyrolysis. Chem. Commun. 15, 1525 (1998).CrossRefGoogle Scholar
35.Leonhardt, A., Ritschel, M., Kozhuharova, R., Graff, A., Mühl, T., Huhle, R., Mönch, I., Elefant, D., Schneider, C.M.: Synthesis and properties of filled carbon nanotubes. Diamond Relat. Mater. 12, 790 (2003).CrossRefGoogle Scholar
36.Demoncy, N., Stéphan, O., Brun, N., Colliex, C., Loiseau, A., Pascard, H.: Filling carbon nanotubes with metals by the arc-discharge method: The key role of sulfur. Eur. Phys. J. B 4, 147 (1998).CrossRefGoogle Scholar
37.Loiseau, A., Willaime, F.: Filled and mixed nanotubes: From TEM studies to the growth mechanism within a phase-diagram approach. Appl. Surf. Sci. 164, 227 (2000).CrossRefGoogle Scholar
38.Guerret-Piécourt, C., Bouar, Y. Le, Loiseau, A., Pascard, H.: Relation between metal electronic structure and morphology of metal compounds inside carbon nanotubes. Nature 372, 761 (1994).CrossRefGoogle Scholar
39.Loiseau, A., Pascard, H.: Synthesis of long carbon nanotubes filled with Se, S, Sb, and Ge by the arc method. Chem. Phys. Lett. 256, 246 (1996).CrossRefGoogle Scholar
40.Zhang, Y., Iijima, S., Shi, Z., Gu, Z.: Defects in arc-discharge-produced single-walled carbon nanotubes. Philos. Mag. Lett. 79, 473 (1999).Google Scholar
41.Sloan, J., Dunin-Borkowski, R.E., Hutchison, J.L., Coleman, K.S., Williams, V.C., Claridge, J.B., York, A.P.E., Xu, C., Bailey, S.R., Brown, G., Friedrichs, S., Green, M.L.H.: The size distribution, imaging and obstructing properties of C60 and higher fullerenes formed within arc-grown single walled carbon nanotubes. Chem. Phys. Lett. 316, 191 (2000).Google Scholar
42.Kiang, C.H., Choi, J.S., Tran, T.T., Bacher, A.D.: Molecular nanowires of 1 nm diameter from capillary filling of single-walled carbon nanotubes. J. Phys. Chem. B 103, 7449 (1999).CrossRefGoogle Scholar
43.Tsang, S.C., Chen, Y.K., Harris, P.J.F., Green, M.L.H.: A simple chemical method of opening and filling carbon nanotubes. Nature 372, 159 (1994).Google Scholar
44.Satishkumar, B. C., Govindaraj, A., Mofokeng, J., Subbanna, G. N., Rao, C. N. R.: Novel experiments with carbon nanotubes: Opening, filling, closing, and functionalizing nanotubes. J. Phys. B 29, 4925 (1996).Google Scholar
45.Monthioux, M.: Filling single wall carbon nanotubes. Carbon 40, 1809 (2002).Google Scholar
46.Berber, S., Kwon, Y-K., Tománek, D.: Microscopic formation mechanism of nanotube peapods. Phys. Rev. Lett. 88, 185502 (2002).Google Scholar
47.Smith, B.W., Luzzi, D.E.: Formation mechanism of fullerene peapods and coaxial tubes: A path to large scale synthesis. Chem. Phys. Lett. 321, 169 (2000).CrossRefGoogle Scholar
48.Brown, G., Bailey, S., Sloan, J., Xu, C., Friedrichs, S., Flahaut, E., Coleman, K.S., Hutchison, J.L., Dunin-Borkowski, R.E., Green, M.L.H.: Electron beam induced in situ clusterization of 1D ZrCl4 chains within single-walled carbon nanotubes. Chem. Commun. 845 (2001).Google Scholar
49.Chancolon, J., Archaimbault, F., Pineau, A., Bonnamy, S.: Filling of carbon nanotubes with selenium by vapor phase process. J. Nanosci. Nanotechnol. 6, 1 (2006).Google Scholar
50.Costa, P.M.F.J., Sloan, J., Rutherford, T., Green, M.L.H.: Encapsulation of RexOy clusters within single-walled carbon nanotubes and their in tubulo reduction and sintering to Re metal. Chem. Mater. 17, 6579 (2005).CrossRefGoogle Scholar
51.Mickelson, W., Aloni, S., Han, W-Q., Cumings, J., Zettl, A.: Packing C60 in boron nitride nanotubes. Science 300, 467 (2003).Google Scholar
52.Fröhlich, T., Scharff, P., Schliefke, W., Romanus, H., Gupta, V., Siegmund, C., Ambacher, O., Spiess, L.: Insertion of C60 into multi-wall carbon nanotubes: A synthesis of C60@MWCNT. Carbon 42, 2759 (2004).CrossRefGoogle Scholar
53.Kim, B.M., Qian, S., Bau, H.H.: Filling carbon nanotubes with particles. Nano Lett. 5, 873 (2005).Google Scholar
54.Korneva, G., Ye, H., Gogotsi, Y., Halverson, D., Friedman, G., Bradley, J-C., Kornev, K.G.: Carbon nanotubes loaded with magnetic nanoparticles. Nano Lett. 5, 879 (2005).Google Scholar
55.Iijima, S., Yudasaka, M., Yamada, R., Bandow, S., Suenaga, K., Kokai, F., Takahashi, K.: Nano-aggregates of single-walled graphitic carbon nano-horns. Chem. Phys. Lett. 309, 165 (1999).Google Scholar
56.Hashimoto, A., Yorimitsu, H., Ajima, K., Suenaga, K., Isobe, H., Miyawaki, J., Yudasaka, M., Iijima, S., Nakamura, E.: Selective deposition of a gadolinium(III) cluster in a hole opening of single-wall carbon nanohorn. Proc. Natl. Acad. Sci. U.S.A. 101, 8527 (2004).CrossRefGoogle Scholar
57.Zhang, Z.L., Li, B., Shi, Z.J., Gu, Z.N., Xue, Z.Q., Peng, L.M.: Filling of single-walled carbon nanotubes with silver. J. Mater. Res. 15, 2658 (2000).Google Scholar
58.Govindaraj, A., Satishkumar, B.C., Nath, M., Rao, C.N.R.: Metal nanowires and intercalated metal layers in single-walled carbon nanotube bundles. Chem. Mater. 12, 202 (2000).CrossRefGoogle Scholar
59.Sloan, J., Wright, D.M., Woo, H.G., Bailey, S., Brown, G., York, A.P.E., Coleman, K.S., Hutchison, J.L., Green, M.L.H.: Capillarity and silver nanowire formation observed in single walled carbon nanotubes. Chem. Commun. 699 (1999).CrossRefGoogle Scholar
60.Noé, L., Monthioux, M., Rapenne, G.: Room temperature filling of SWNTs with C60 fullerenes and derivatives. Carbon (2007, in press).Google Scholar
61.Simon, F., Kuzmany, H., Rauf, H., Pichler, T., Bernardi, J., Peterlik, H., Korecz, L., Fülöp, F., Jànossy, A.: Low temperature fullerene encapsulation in single wall carbon nanotubes: Synthesis of N@C60@SWCNT. Chem. Phys. Lett. 383, 362 (2004).Google Scholar
62.Britz, D.A., Khlobystov, A.N., Wang, J., O’Neil, A.S., Poliakoff, M., Ardavan, A., Briggs, G.A.D.: Selective host-guest interaction of single-walled carbon nanotubes with functionalized fullerenes. Chem. Commun. 176 (2004).CrossRefGoogle Scholar
63.Britz, D.A., Khlobystov, A.N., Porfyrakis, K., Ardavan, A., Briggs, G.A.D.: Filling of fullerene oxide in supercritical CO2. Chem. Commun. 37 (2005).Google Scholar
64.Mittal, J., Monthioux, M., Allouche, H., Stephan, O.: Room temperature filling of single-wall carbon nanotubes with chromium oxide in open air. Chem. Phys. Lett. 339, 311 (2001).Google Scholar
65.Mittal, J., Konno, H., Inagaki, M.: Synthesis of GICs of CrVI compound using CrO3 and HCl at room temperature. Synth. Met. 96, 103 (1998).Google Scholar
66.Satishkumar, B.C., Taubert, A., Luzzi, D.E.: Filling single-wall carbon nanotubes with d- and f-metal chloride and metal nanowires. J. Nanosci. Nanotechnol. 3, 159 (2003).Google Scholar
67.Hulman, M., Kuzmany, H., Costa, P.M.F.J., Friedrichs, S., Green, M.L.H.: Light-induced instability of PbO-filled single-wall carbon nanotubes. Appl. Phys. Lett. 85, 2068 (2004).Google Scholar
68.Grigorian, L., Williams, K.A., Fang, S., Sumanasekera, G.U., Loper, A.L., Dickey, E.C., Pennycook, S.J., Eklund, P.C.: Reversible intercalation of charged iodine chains into carbon nanotube ropes. Phys. Rev. Lett. 80, 5560 (1998).Google Scholar
69.Fan, X., Dickey, E.C., Eklund, P.C., Williams, K.A., Grigorian, L., Buczko, R., Pantelides, S.T., Pennycook, S.J.: Atomic arrangement of iodine atoms inside single-walled carbon nanotubes. Phys. Rev. Lett. 84, 4621 (2000).Google Scholar
70.Mittal, J., Monthioux, M., Allouche, H. Synthesis of SWNT-based hybrid nanomaterials from photolysis-enhanced chemical processes. Twenty-Fifth Biennial Conference on Carbon, Lexington, KY. Novel/14.2. (2001).Google Scholar
71.Mittal, J., Monthioux, M., Serin, V., Cleuziou, J-P. UV photolysis: An alternative for the synthesis of hybrid carbon nanotubes. Chinese-French Workshop on Carbon Materials, Orléans, France (September 30-October 1, 2005).Google Scholar
72.Jeong, G-H., Hatakeyama, R., Hirata, T., Tohji, K., Motomiya, K., Sato, N., Kawazoe, Y.: Structural deformation of single-walled carbon nanotubes and fullerene encapsulation due to magnetized-plasma ion irradiation. Appl. Phys. Lett. 79, 4213 (2001).Google Scholar
73.Jeong, G-H., Hatakeyama, R., Hirata, T., Tohji, K., Motomiya, K., Yaguchi, T., Kawazoe, Y.: Formation and structural observation of cesium encapsulated single-walled carbon nanotubes. Chem. Commun. 152 (2003).CrossRefGoogle ScholarPubMed
74.Sun, B-Y., Sato, Y., Suenaga, K., Okazaki, T., Kishi, N., Sugai, T., Bandow, S., Iijima, S., Shinohara, H.: Entrapping of exohedral metallofullerenes in carbon nanotubes: (CsC60)n@SWNT nano-peapods. J. Am. Chem. Soc. 127, 17972 (2005).CrossRefGoogle ScholarPubMed
75.Kataura, H., Maniwa, Y., Kodama, T., Kikuchi, K., Hirahara, K., Suenaga, K., Iijima, S., Suzuki, S., Achiba, Y., Krätschmer, W.: High-yield fullerene encapsulation in single-wall carbon nanotubes. Synth. Met. 121, 1195 (2001).Google Scholar
76.Hirahara, K., Bandow, S., Suenaga, K., Kato, H., Okazaki, T., Shinohara, H., Iijima, S.: Electron diffraction study of onedimensional crystals of fullerenes. Phys. Rev. B 64, 115420 (2001).Google Scholar
77.Shimada, T., Ohno, Y., Okazaki, T., Sugai, T., Suenaga, K., Kishimoto, S., Mizutani, T., Inoue, T., Taniguchi, R., Fukui, N., Okubo, H., Shinohara, H.: Transport properties of C78, C90 and Dy@C82 fullerenes-nanopeapods by field effect transistors. Physica E (Amsterdam) 21, 1089 (2004).Google Scholar
78.Smith, B.W., Luzzi, D.E., Achiba, Y.: Tumbling atoms and evidence for charge transfer in La2@C80@SWNT. Chem. Phys. Lett. 331, 137 (2000).CrossRefGoogle Scholar
79.Luzzi, D.E., Smith, B.W., Russo, R., Satishkumar, B.C., Stercel, F., Nemes, N.Encapsulation of metallofullerenes and metallocenes in carbon nanotubes, in Electronic Properties of Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Conference Proceedings Series 591, 622 (2001).Google Scholar
80.Shiozawa, H., Rauf, H., Pichler, T., Knupfer, M., Kalbac, M., Yang, S., Dunsch, L., Büchner, B., Batchelor, D., Kataura, H.Effective valency of Dy ions in Dy3N@C80 metallofullerenes in peapods, in Electronic Properties of Novel Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Conference Proceedings Series 786, 325 (2002).Google Scholar
81.Hirahara, K., Suenaga, K., Bandow, S., Kato, H., Okazaki, T., Shinohara, H., Iijima, S.: One-dimensional metallofullerene crystal generated inside single-walled carbon nanotubes. Phys. Rev. Lett. 85, 5384 (2000).Google Scholar
82.Suenaga, K., Tencé, M., Mory, C., Colliex, C., Kato, H., Okazaki, T., Shinohara, H., Hirahara, K., Bandow, S., Iijima, S.: Element-selective single atom imaging. Science 290, 2280 (2000).Google Scholar
83.Suenaga, K., Hirahara, K., Bandow, S., Iijima, S., Okazaki, T., Kato, H., Shinohara, H.Core level spectroscopy on the valence state of encaged metal in metallofullerenes-peapods, in Electronic Properties of Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Conference Proceedings Series 591, 256 (2001).CrossRefGoogle Scholar
84.Chiu, P.W., Gu, G., Kim, G.T., Philipp, G., Roth, S., Yang, S.F., Yang, S.: Temperature-induced change from p to n conduction in metallofullerene nanotube peapods. Appl. Phys. Lett. 79, 3845 (2001).Google Scholar
85.Okazaki, T., Suenaga, K., Hirahara, K., Bandow, S., Iijima, S., Shinohara, H.: Real time reaction dynamics in carbon nanotubes. J. Am. Chem. Soc. 123, 9673 (2001).Google Scholar
86.Okazaki, T., Suenaga, K., Hirahara, K., Bandow, S., Iijima, S., Shinohara, H.: Electronic and geometric structures of metallofullerenes peapods. Physica B (Amsterdam) 323, 97 (2002).Google Scholar
87.Suenaga, K., Okazaki, T., Wang, C-R., Bandow, S., Shinohara, H., Iijima, S.: Direct imaging of Sc2@C84 molecules encapsulated inside single-wall carbon nanotubes by high resolution electron microscopy with atomic sensitivity. Phys. Rev. Lett. 90, 055506 (2003).Google Scholar
88.Suenaga, K., Taniguchi, R., Shimada, T., Okazaki, T., Shinohara, H., Iijima, S.: Evidence for the intramolecular motion of Gd atoms in a Gd2@C92 nanopeapod. Nano Lett. 3, 1395 (2003).Google Scholar
89.Pichler, T., Kukovecz, A., Kuzmany, H., Kataura, H., Achiba, Y.: Quasicontinuous electron and hole doping of C60 peapods. Phys. Rev. B 67, 125416 (2003).Google Scholar
90.Kalbac, M., Kavan, L., Zukalova, M., Dunsch, L.: Two positions of potassium in chemically doped C60 peapods: An in situ spectroelectrochemical study. J. Phys. Chem. B 108, 6275 (2004).Google Scholar
91.Luzzi, D.E., Smith, B.W.: Carbon cage structures in single wall carbon nanotubes: A new class of materials. Carbon 38, 1751 (2000).Google Scholar
92.Kramberger, C., Waske, A., Biedermann, K., Pichler, T., Gemming, T., Büchner, B., Kataura, H.: Tailoring carbon nanostructures via temperature and laser irradiation. Chem. Phys. Lett. 407, 254 (2005).Google Scholar
93.Smith, B.W., Monthioux, M., Luzzi, D.E.: Carbon nanotube encapsulated fullerenes: A unique class of hybrid materials. Chem. Phys. Lett. 315, 31 (1999).Google Scholar
94.Bandow, S., Takizawa, M., Hirahara, K., Yudasaka, M., Iijima, S.: Raman scattering study of double-wall carbon nanotubes derived from the chains of fullerenes in single-wall carbon nanotubes. Chem. Phys. Lett. 337, 48 (2001).CrossRefGoogle Scholar
95.Sakurabayashi, Y., Monthioux, M., Kishita, K., Suzuki, Y., Kondo, T., Le Lay, M.Tailoring double wall carbon nanotubes, in Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Conference Proceedings 685, 302 (2003).Google Scholar
96.Arrondo, C., Monthioux, M., Kishita, Y., Lay, M. LeIn situ coalescence of aligned C60 in peapods, in Electronic Properties of Novel Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Conference Proceedings 786, 329 (2005).CrossRefGoogle Scholar
97.Flahaut, E., Bacsa, R., Peigney, A., Laurent, C.: Gram-scale CCVD synthesis of double-walled carbon nanotubes. Chem. Commun. 1442 (2003).Google Scholar
98.Pacheco, M., Allouche, H., Monthioux, M., Razafinimanana, M., Gleizes, A. Correlation between the plasma characteristics, and the morphology and structure of the carbon phases synthesized by electric arc discharge. Proceedings of the 25th Biennial Conference on Carbon, Lexington, KY. Novel/14.1 (2001).Google Scholar
99.Hutchison, J.L., Kiselev, N.A., Krinichnaya, E.P., Krestinin, A.V., Loutfy, R.O., Morawsky, A.P., Muradyan, V.E., Obraztsova, E.D., Sloan, J., Terekhov, S.V., Zakharov, N.: Double-walled carbon nanotubes fabricated by a hydrogen arc discharge method. Carbon 39, 761 (2001).Google Scholar
100.Dresselhaus, M.S., Dresselhaus, G., Eklund, P.C.: Science of Fullerenes and Carbon Nanotubes . (Academic Press, New York, (1996).Google Scholar
101.Guldi, D.M., Marcaccio, M., Paolucci, D., Paolucci, F., Tagmatarchis, N., Tasis, D., Vasquez, E., Prato, M.: Single-wall carbon nanotube-ferrocene nanohybrids: Observing intramolecular electron transfer in functionalized SWNTs. Angew. Chem., Int. Ed. 42, 4206 (2003).Google Scholar
102.Guan, L., Shi, Z., Li, M., Gu, Z.: Ferrocene-filled single-walled carbon nanotubes. Carbon 43, 2780 (2005).Google Scholar
103.Morgan, D.A., Sloan, J., Green, M.L.H.: Direct imaging of o-carborane molecules within single walled carbon nanotubes. Chem. Commun. 2442 (2002).Google Scholar
104.Takenobu, T., Takano, T., Shiraishi, M., Murakami, Y., Ata, M., Kataura, H., Achiba, Y., Iwasa, Y.: Stable and controlled amphoteric doping by encapsulation of organic molecules inside carbon nanotubes. Nat. Mater. 2, 683 (2003).Google Scholar
105.Kataura, H., Maniwa, Y., Abe, M., Fujiwara, A., Kodama, T., Kikuchi, K., Imahori, H., Misaki, Y., Suzuki, S., Achiba, Y.: Optical properties of fullerene and non-fullerene peapods. Appl. Phys. A 74, 349 (2002).CrossRefGoogle Scholar
106.Kataura, H., Maniwa, Y., Kodama, T., Kikuchi, K., Susuki, S., Achiba, Y., Sugiura, K., Okubo, S., Tsukagoshi, K.One-dimensional system in carbon nanotubes, in Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Conference Proceedings 685, 349 (2003).Google Scholar
107.Kammen, D.M., Lipman, T.E., Lovins, A.B., Lehman, P.A., Eiler, J.M., Tromp, T.K., Shia, R-L., Allen, M., Yung, Y.L.: Assessing the future hydrogen economy. Science 300, 1740 (2003).Google Scholar
108.Kuznetsova, A., Yates, J.T. Jr.Li, J., Smalley, R.E.: Physical adsorption of xenon in open single walled carbon nanotubes: Observation of a quasi-one-dimensional confined Xe phase. J. Chem. Phys. 112, 9590 (2000).Google Scholar
109.Fujiwara, A., Ishii, K., Suematsu, H., Kataura, H., Maniwa, Y., Susuki, S., Achiba, Y.: Gas adsorption in the inside and outside of single-walled carbon nanotubes. Chem. Phys. Lett. 336, 205 (2001).Google Scholar
110.Williams, K.A., Eklund, P.C.: Monte Carlo simulations of H2 physisorption in finite-diameter carbon nanotube ropes. Chem. Phys. Lett. 320, 352 (2000).Google Scholar
111.Dillon, A.C., Jones, K.M., Bekkedahl, T.A., Kiang, C.H., Bethune, D.S., Heben, M.J.: Storage of hydrogen in single-walled carbon nanotubes. Nature 386, 377 (1997).Google Scholar
112.Hirscher, M., Becher, M., Haluska, M., Dettlaff-Weglikowska, U., Quintel, A., Duesberg, G.S., Choi, Y.M., Downes, P., Hulman, M., Roth, S., Stepanek, I., Bernier, P.: Hydrogen storage in sonicated carbon materials. Appl. Phys. Mater. Sci. Process 72, 129 (2001).CrossRefGoogle Scholar
113.Corio, P., Santos, A.P., Santos, P.S., Temperini, M.L.A., Brar, V.W., Pimenta, M.A., Dresselhaus, M.S.: Characterization of single wall carbon nanotubes filled with silver and with chromium compounds. Chem. Phys. Lett. 383, 475 (2004).Google Scholar
114.Borowiak-Palen, E., Rummeli, M.H., Mendoza, E., Henley, S.J., Cox, D.C., Poa, C.H.P., Stolojan, V., Gemming, T., Pichler, T., Silva, S.R.P.Silver intercalated carbon nanotubes, in Electronic Properties of Novel Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Proceedings Series 786, 236 (2005.Google Scholar
115.Borowiak-Palen, E., Mendoza, E., Bachmatiuk, A., Rummeli, M.H., Gemming, T., Nogues, J., Skumryev, V., Kalenczuk, R.J., Pichler, T., Silva, S.R.P.: Iron filled single-wall carbon nanotubes: A novel ferromagnetic medium. Chem. Phys. Lett. 421, 129 (2006).Google Scholar
116.Xu, C., Sloan, J., Brown, G., Bailey, S., Williams, V.C., Friedrichs, S., Coleman, K.S., Flahaut, E., Hutchison, J.L., Dunin-Borkowski, R.E., Green, M.L.H.: 1D lanthanide halide crystals inserted into single-walled carbon nanotubes. Chem. Commun. 2427 (2000).CrossRefGoogle Scholar
117.Ebbesen, T.W.: Wetting, filling, and decorating carbon nanotubes. J. Chem. Phys. Solids 57, 951 (1996).Google Scholar
118.Sloan, J., Friedrichs, S., Meyer, R.R., Kirkland, A.I., Hutchison, J.L., Green, M.L.H.: Structural changes induced in nanocrystals of binary compounds confined within single walled carbon nanotubes: A brief review. Inorg. Chim. Acta 330, 1 (2002).Google Scholar
119.Carter, R., Sloan, J., Kirkland, A.I., Meyer, R.R., Lindan, P.J.D., Lin, G., Green, M.L.H., Vlandas, A., Hutchison, J.L., Harding, J.: Correlation of structural and electronic properties in a new low-dimensional form of mercury telluride. Phys. Rev. Lett. 96, 215501 (2006).Google Scholar
120.Flahaut, E., Sloan, J., Coleman, K.S., Green, M.L.H.Synthesis of 1D P-block halide crystals within single walled carbon nanotubes, in Electronic Properties of Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Proceedings Series 591, 283 (2001).Google Scholar
121.Sloan, J., Friedrichs, S., Flahaut, E., Brown, G., Bailey, S.R., Coleman, K.S., Xu, C., Green, M.L.H., Hutchison, J.L., Kirkland, A.I., Meyer, R.R.The characterization of sub-nanometer scale structures within single walled carbon nanotubes, in Electronic Properties of Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Proceedings Series 591, 277 (2001).CrossRefGoogle Scholar
122.Sloan, J., Terrones, M., Nufer, S., Friedrichs, S., Bailey, S.R., Woo, H-G., Rühle, M., Hutchison, J.L., Green, M.L.H.Spatially resolved EELS applied to the study of a one-dimensional solid solution of AgCl1-xIx formed within single-wall carbon nanotubes, in Structural and Electronic Properties of Molecular Nanostructures, edited by Kuzmany, H., Fink, J., Mehring, M., and Roth, S., American Institute of Physics Proceedings Series 633, 135 (2002).Google Scholar
123.Sloan, J., Novotny, M.C., Bailey, S.R., Brown, G., Xu, C., Williams, V.C., Friedrichs, S., Flahaut, E., Callender, R.L., York, A.P.E., Coleman, K.S., Green, M.L.H., Dunin-Borkowski, R.E., Hutchison, J.L.: Two layer 4:4 coordinated KI crystals grown within single walled carbon nanotubes. Chem. Phys. Lett. 329, 61 (2000).CrossRefGoogle Scholar
124.Meyer, R.R., Sloan, J., Dunin-Borkowski, R.E., Kirkland, A.I., Novotny, M.C., Bailey, S.R., Hutchison, J.L., Green, M.L.H.: Discrete atom imaging of one-dimensional crystals formed within single-walled carbon nanotubes. Science 289, 1324 (2000).Google Scholar
125.Costa, P.M.F.J., Friedrichs, S., Sloan, J., Green, M.L.H.: Imaging lattice defects and distortions in alkali-metal iodides encapsulated within double-walled carbon nanotubes. Chem. Mater. 17, 3122 (2005).Google Scholar
126.Sloan, J., Grosvenor, S.J., Friedrichs, S., Kirkland, A., Hutchison, J.L., Green, M.L.H.: A one-dimensional BaI2 chain with five-and six-coordination, formed within a single-walled carbon nanotube. Angew. Chem., Int. Ed. 41, 1156 (2002).Google Scholar
127.Philp, E., Sloan, J., Kirkland, A., Meyer, R.R., Friedrichs, S., Hutchison, J.L., Green, M.L.H.: An encapsulated helical one-dimensional cobalt iodide nanostructure. Nat. Mater. 2, 788 (2003).Google Scholar
128.Flahaut, E., Sloan, J., Friedrichs, S., Kirkland, A.I., Coleman, K.S., Williams, V.C., Hanson, N., Hutchison, J.L., Green, M.L.H.: Crystallization of 2H and 4H PbI2 in carbon nanotubes of varying diameters and morphologies. Chem. Mater. 18, 2059 (2006).Google Scholar
129.Friedrichs, S., Meyer, R.R., Sloan, J., Kirkland, A.I., Hutchison, J.L., Green, M.L.H.: Complete characterization of a Sb2O3/(21,-8)SWNT inclusion composite. Chem. Commun. 929 (2001).Google Scholar
130.Friedrichs, S., Sloan, J., Green, M.L.H., Hutchison, J.L., Meyer, R.R., Kirkland, A.I.: Simultaneous determination of inclusion crystallography and nanotube conformation for a Sb2O3/single-walled nanotube composite. Phys. Rev. B 64, 045406 (2001).Google Scholar
131.Guo, Y., Kong, Y., Guo, W., Gao, H.: Structural transition of copper nanowires confined in single-walled carbon nanotubes. J. Comput. Theor. Nanosci. 1, 93 (2004).Google Scholar
132.Kang, Y-J., Choi, J., Moon, C-Y., Chang, K.J.: Electronic and magnetic properties of single-wall carbon nanotubes filled with iron atoms. Phys. Rev. B 71, 115441 (2005).Google Scholar
133.Weissmann, M., García, G., Kiwi, M., Ramírez, R.: Theoretical study of carbon-coated iron nanowires. Phys. Rev. B 70, 201401 (2004).Google Scholar
134.Weissmann, M., García, G., Kiwi, M., Ramírez, R., Fu, C-C.: Theoretical study of iron-filled carbon nanotubes. Phys. Rev. B 73, 125435 (2004).Google Scholar
135.Yoon, M., Berber, S., Tománek, D.: Energetics and packing of fullerenes in nanotube peapods. Phys. Rev. B 71, 155406 (2005).Google Scholar
136.Wells, A.F. in Structural Inorganic Chemistry . (Oxford University Press, Oxford, UK, (1990).Google Scholar
137.Vavro, J., Llaguno, M.C., Satishkumar, B.C., Luzzi, D.E., Fischer, J.E.: Electrical and thermal properties of C60-filled single-wall carbon nanotubes. Appl. Phys. Lett. 80, 1450 (2002).Google Scholar
138.Hongo, H., Nihey, F., Yudasaka, M., Ichihashi, T., Iijima, S.: Transport properties of single-wall carbon nanotubes with encapsulated C60. Physica B (Amsterdam) 323, 244 (2002).Google Scholar
139.Chiu, P.W., Yang, S.F., Yang, S.H., Gu, G., Roth, S.: Temperature dependence of conductance character in nanotube peapods. Appl. Phys. A 76, 463 (2003).Google Scholar
140.Cho, Y., Han, S., Kim, G., Lee, H., Ihm, J.: Orbital hybridization and charge transfer in carbon nanopeapods. Phys. Rev. Lett. 90, 106402 (2003).Google Scholar
141.Rochefort, A.: Electronic and transport properties of carbon nanotube peapods. Phys. Rev. B 67, 115401 (2003).Google Scholar
142.Hornbaker, D.J., Kahng, S-J., Misra, S., Smith, B.W., Johnson, A.T., Mele, E.J., Luzzi, D.E., Yazdani, A.: Mapping the one-dimensional electronic states of nanotube peapod structures. Science 295, 828 (2002).Google Scholar
143.Fagan, S.B., Filho, A.G. Souza, Filho, J. Mendes, Corio, P., Dresselhaus, M.S.: Electronic properties of Ag- and CrO3-filled single-wall carbon nanotubes. Chem. Phys. Lett. 406, 54 (2005).Google Scholar
144.Lota, G., Frackowiak, E., Mittal, J., Monthioux, M.: High performance supercapacitor from hybrid-nanotube-based electrodes. Chem. Phys. Lett. (2006, in press).Google Scholar
145.de Gennes, P-G., Brochart-Wyart, F., Quéré, D.Droplets, bubbles, pearls, and waves. (Belin, Paris, 2002) (in French).Google Scholar
146.Terrones, M., Grobert, N., Hsu, W. K., Zhu, Y. Q., Hu, W. B., Terrones, H., Hare, J. P., Kroto, H. W., Walton, D. R.: Advances in the creation of filled nanotubes and novel nanowires. MRS Bull. 24(8), 43 (1999).Google Scholar
147.Pederson, M.R., Broughton, J.Q.: Nanocapillarity in fullerene tubules. Phys. Rev. Lett. 69, 2689 (1992).Google Scholar