Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-25T06:34:08.042Z Has data issue: false hasContentIssue false

Hot isostatic pressing synthesis and mechanical properties of Al/Al–Cu–Fe composite materials

Published online by Cambridge University Press:  31 January 2011

T. El Kabir
Affiliation:
Université de Poitiers, Laboratoire de Métallurgie Physique, Centre National de la Recherche Scientifique (CNRS)-UMR 6630, SP2MI, 86962 Fururoscope Chasseneuil, France
A. Joulain
Affiliation:
Université de Poitiers, Laboratoire de Métallurgie Physique, Centre National de la Recherche Scientifique (CNRS)-UMR 6630, SP2MI, 86962 Fururoscope Chasseneuil, France
V. Gauthier
Affiliation:
Université de Poitiers, Laboratoire de Métallurgie Physique, Centre National de la Recherche Scientifique (CNRS)-UMR 6630, SP2MI, 86962 Fururoscope Chasseneuil, France
S. Dubois
Affiliation:
Université de Poitiers, Laboratoire de Métallurgie Physique, Centre National de la Recherche Scientifique (CNRS)-UMR 6630, SP2MI, 86962 Fururoscope Chasseneuil, France
J. Bonneville*
Affiliation:
Université de Poitiers, Laboratoire de Métallurgie Physique, Centre National de la Recherche Scientifique (CNRS)-UMR 6630, SP2MI, 86962 Fururoscope Chasseneuil, France
D. Bertheau
Affiliation:
Ecole Nationale Supérieure de Mécanique et d’Aérotechnique (ENSMA), Laboratoire de Mécanique et Physique des de Matériaux, Centre National de la Recherche Scientifique (CNRS)-UMR 6617, 86961 Fururoscope Chasseneuil, France
*
a)Address all correspondence to this author. e-mail: Joel.Bonneville@univ-poitiers.fr
Get access

Abstract

Metal-matrix composites are produced from Al powder and 30 vol% of icosahedral Al–Cu–Fe quasi-crystalline particles using a hot isostatic pressing technique. It is demonstrated that the initial icosahedral phase is transformed into the ω-Al70Cu20Fe10 tetragonal phase during the hot isostatic pressing (HIP) process. The mechanical properties of the composite were evaluated over the temperature range 293 to 773 K by performing compression tests at constant strain rate. The temperature dependence of the yield stress gives evidence of two temperature regimes with a transition temperature at approximately 423 K. Strain-rate sensitivity measurements support the change in rate-controlling deformation mechanisms at this temperature. It is proposed that cross-slip and/or climb mechanism control plastic flow. Finally, it is suggested that the phase transformation of the particle contributes positively to the improvement of the mechanical properties.

Type
Articles
Copyright
Copyright © Materials Research Society 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Schurack, F., Eckert, J.Schultz, L.: Synthesis and mechanical properties of quasicrystalline Al-based composites in Quasicrystals, edited by H-R. Trebin Wiley-VCH GmbH & Co. Weinheim 2003 551Google Scholar
2Giacometti, E., Baluc, N., Bonneville, J.Rabier, J.: Microindentations of Al–Cu–Fe icosahedral quasicrystal. Scripta Mater. 41, 989 1999CrossRefGoogle Scholar
3Urban, K., Feuerbacher, M.Wollgarten, M.: Mechanical behavior of quasicrystals. MRS Bull. 22, 65 1997CrossRefGoogle Scholar
4Miracle, D.B.: Metal matrix composites—From science to technological significance. Compos. Sci. Technol. 65, 2526 2005CrossRefGoogle Scholar
5Butler, R.: Ready for take-off. Prof. Eng. 18, 28 2005Google Scholar
6Suresh, S.Needleman, A.: Analyses of deformation and ductility in metal–ceramic composites. Am. Soc. Mech. Eng. AMD 150, 191 1992Google Scholar
7Pandley, A.B.Chawla, N.: The fracture toughness and fatigue behavior of DRA. JOM 51, 69 1999CrossRefGoogle Scholar
8Hunt, J.R., Warren, H., Osman, T.M., Lewandovski, J.J.John, J.: Micro- and macrostructural factors in DRA fracture resistance. JOM 45, 30 1993CrossRefGoogle Scholar
9Lai, S.W.Chung, D.D.L.: Consumption of SiC whiskers by the Al-SiC reaction in aluminium-matrix SiC whisker composites. J. Mater. Chem. 6, 469 1996CrossRefGoogle Scholar
10Lloyd, D.J.: Particle reinforced aluminium and magnesium matrix composites. Int. Mater. Rev. 39, 1 1994CrossRefGoogle Scholar
11Tang, F.: The microstructure-processing-property relationships in an A1 matrix composite system reinforced by Al–Cu–Fe alloy particles.PhD. Thesis, Iowa State University,2004CrossRefGoogle Scholar
12Lee, S.M., Jung, J.H., Fleury, E.Kim, D.H.: Metal matrix composites reinforced by gas atomised Al–Cu–Fe powders. Mater. Sci. Eng., A 294–296, 99 2000CrossRefGoogle Scholar
13Schurack, F., Eckert, J.Schultz, L.: Synthesis and mechanical properties of mechanically alloyed Al–Cu–Fe quasicrystalline composites. Philos. Mag. 83, 1287 2003CrossRefGoogle Scholar
14Tang, F., Anderson, I.E.Biner, S.B.: Microstructures and mechanical properties of pure Al matrix composites reinforced by Al–Cu–Fe alloy particles. Mater. Sci. Eng., A 363, 20 2003CrossRefGoogle Scholar
15Tsaï, A.P., Aoki, K., Akihisa, I.Masumoto, T.: Synthesis of stable quasicrystalline particle-dispersed Al base composite alloys. J. Mater. Res. 8, 5 1993CrossRefGoogle Scholar
16Tang, F., Gnaüpel-Herold, T., Prask, H.Anderson, I.E.: Residual stresses and stress partitioning measurements by neutron diffraction in Al/Al–Cu–Fe composites. Mater. Sci. Eng., A 399, 99 2005CrossRefGoogle Scholar
17Tang, F., Meeks, H., Spowart, J.E., Gnaüpel-Herold, T., Prask, H.Anderson, I.E.: Consolidation effects on tensile properties of an elemental Al matrix composite. Mater. Sci. Eng., A 386, 194 2004CrossRefGoogle Scholar
18Fleury, E., Lee, S.M.Choi, G.: Comparison of Al–Cu–Fe quasicrystalline particle reinforced Al composites fabricated by conventional casting and extrusion. J. Mater. Sci. 36, 963 2001CrossRefGoogle Scholar
19Kenzari, S., Weisbecker, P., Geandier, G., Fournee, V.Dubois, J.M.: Influence of oxidation of i-AlCuFeB particles on the formation of Al-based composites prepared by solid state sintering. Philos. Mag. 86, 287 2006CrossRefGoogle Scholar
20Khaloshkin, S.D., Tcherdyntsev, V.V., Laptev, A.I., Stepashkin, A.A., Afonina, E.A., Pomadchik, A.L.Bugakov, V.I.: Structure and mechanical properties of mechanically alloyed Al/Al–Cu–Fe composites. J. Mater. Sci. 39, 5399 2004CrossRefGoogle Scholar
21Schurack, F., Eckert, J.Schultz, L.: Synthesis and mechanical properties of cast quasicrystal-reinforced Al-alloys. Acta Mater. 49, 1351 2001CrossRefGoogle Scholar
22Giacometti, E., Baluc, N.Bonneville, J.: Identification of rate controlling mechanisms in icosahedral Al–Cu–Fe in Modelling of Structure and Mechanics of Materials from Microscale to Product, Proceedings of the International Symposium on Materials Science,, edited by J.V. Cartensen, T. Leffers, T. Lorentzen, O.B. Pedersen, B.F. Sorensen, and G. Winther Risø National Laboratory, Roskilde, Denmark 1998 267Google Scholar
23Palacio, L., Pradanos, P., Calvo, J.I.Hernandez, A.: Porosity measurements by a gas penetration method and other techniques applied to membrane characterization. Thin Solid Films 348, 22 1999CrossRefGoogle Scholar
24Spätig, P.: The role of thermal activation in the plasticity of ordered intermetallic compounds: Ni3(Al,X). PhD. Thesis, No. 1407, Lausanne-Switzerland, EPFL,1995Google Scholar
25Guiu, F.Pratt, P.L.: Stress relaxation and the plastic deformation of solids. Phys. Stat. Sol. 6, 11 1964CrossRefGoogle Scholar
26Bown, M.G.Brown, P.J.: The structure of FeCu2Al7 and T(CoCuAl). Acta Crystallogr. 9, 911 1956CrossRefGoogle Scholar
27Faudot, F., Quivy, A., Calvayrac, Y., Gratias, D.Havemelin, H.: About the Al–Cu–Fe icosahedral phase formation. Mater. Sci. Eng., A 133, 383 1991CrossRefGoogle Scholar
28Gratias, D., Calvayrac, Y., Devaud-Rzepski, J., Faudot, F., Harmelin, M.Quivy, A.: The phase diagram and structures of the ternary AlCuFe system in the vicinity of the icosahedral region. J. Non-Cryst. Sol. 153–154, 482 1993CrossRefGoogle Scholar
29Kang, Y-C.Chan, S.L-I.: Tensile properties of nanometric Al2O3 particulate-reinforced aluminum matrix composites. Mater. Chem. Phys. 85, 438 2004CrossRefGoogle Scholar
30Kenzari, S.: Development and characterization of metal-complex intermetallic nano-composites. PhD. Thesis, Nancy, Institut National Polytechnique de Lorraine, 2006Google Scholar
31Dotsenko, V.I.: Stress relaxation in crystals. Phys. Stat. Sol. 93, 11 1979CrossRefGoogle Scholar
32Orowan, E.: Classification and nomenclature of internal stresses in Proceedings of the Symposium on Internal Stresses in Metals and Alloys The Institute of Metals London 1948 451Google Scholar
33Carrard, M.: The study of (001) glide in aluminum and its importance in creep PhD. Thesis, No. 585, Lausanne-Switzerland, EPFL, 1985Google Scholar
34Conrad, H.: The athermal component of the flow stress in crystalline solids. Mater. Sci. Eng. 6, 265 1970CrossRefGoogle Scholar
35Brown, L.M.Ham, R.M.: Dislocation particle interactions in Strengthening Methods in Crystals, edited by R.W. Cahn and R.B. Nicholson Elsevier Amsterdam 1971 12Google Scholar
36Rösler, J.Artz, E.: The kinetics of dislocation climb over hard particles—I. Climb without attractive particle–dislocation interaction. Acta Metall. 36, 1043 1988CrossRefGoogle Scholar
37Artz, E.Rösler, J.: The kinetics of dislocation climb over hard particles—II. Effects of an attractive particle–dislocation interaction. Acta Metall. 36, 1053 1988Google Scholar
38Hirsch, P.B.: The interpretation of the slip pattern in terms of dislocation movements. J. Inst. Met. 86, 13 1957–1958Google Scholar
39Xiang, Y., Srolovitz, D.J., Cheng, L-T.Weinan, E.: Level set simulations of dislocation-particle bypass mechanisms. Acta Mater. 52, 1745 2004CrossRefGoogle Scholar