Skip to main content Accessibility help

The hot deformation behavior and processing map of powder metallurgy NiAl-based alloy

  • Zhenhan Huang (a1), Zhen Lu (a1), Shaosong Jiang (a1) and Kaifeng Zhang (a1)


Hot deformation is an effective way to tackle major problems in powder metallurgy, i.e., inferior mechanical properties and low relative density. To characterize the hot deformation behavior of NiAl-based alloy manufactured by hot pressing sintering, the isothermal compression tests were performed in the deformation temperature range of 1100–1300 °C with strain rate of 0.001–1 s−1. The result indicates that calculated hot activation energy Q is 326.31 kJ/mol. The processing efficiency maps and instability maps of NiAl-based alloy were established to optimize deformation parameters on the basis of dynamic material model. They were validated through microstructure evolution. The microstructure observation revealed that fine grains, dislocation pile-up, cracks appear in high efficiency, low efficiency, and instability domains, respectively. According to effective processing window revealed by processing maps, hot forging of sintered billets was performed. The elevated temperature elongation increases from 17.86% to 74.87% after forging. The stripping feature is found on fracture surface after forging.


Corresponding author

a) Address all correspondence to this author. e-mail:


Hide All
1. Liu, C.T.: Recent advances in ordered intermetallics. Mater. Chem. Phys. 42, 77 (1995).
2. Liu, C., Fu, C., Chisholm, M., Thompson, J., Krcmar, M., and Wang, X.: Magnetism and solid solution effects in NiAl (40% Al) alloys. Prog. Mater. Sci. 52(2–3), 352 (2007).
3. Bochenek, K. and Basista, M.: Advances in processing of NiAl intermetallic alloys and composites for high temperature aerospace applications. Progr. Aero. Sci. 79, 136 (2015).
4. Koch, C.C. and Whittenberger, J.D.: Mechanical miiling/alloying of intermetallics. Intermetallics 4, 339 (1995).
5. Dey, G.K.: Physical metallurgy of nickel aluminides. Sadhana 28, 247 (2003).
6. Ward-Close, C.M., Minor, R., and Doorbar, P.J.: Intermetallic-matrix composites—A review. Intermetallics 4, 217 (1995).
7. Sheng, L.Y., Zhang, W., Guo, J.T., Wang, Z.S., and Ye, H.Q.: Microstructure evolution and elevated temperature compressive properties of a rapidly solidified NiAl–Cr(Nb)/Dy alloy. Mater. Des. 30(7), 2752 (2009).
8. Wang, L., Shen, J., Zhang, Y., and Fu, H.: Microstructure, fracture toughness and compressive property of as-cast and directionally solidified NiAl-based eutectic composite. Mater. Sci. Eng., A 664, 188 (2016).
9. Cui, C.Y., Guo, J.T., and Ye, H.Q.: Effects of Hf additions on high-temperature mechanical properties of a directionally solidified NiAl/Cr(Mo) eutectic alloy. J. Alloys Compd. 463(1–2), 263 (2008).
10. Qi, Y.H., Guo, J.T., Cui, C.Y., and Li, G.S.: Superplasticity of a directionally solidified NiAl–Fe(Nb) alloy at high temperature. Mater. Lett. 57, 552 (2002).
11. Cui, C.Y., Guo, J.T., Qi, Y.H., and Ye, H.Q.: High tensile elongation of a directionally solidified NiAl multiphase alloy at high temperatures. Mater. Sci. Eng., A 396(1–2), 194 (2005).
12. Shang, Z., Shen, J., Wang, L., Du, Y., Xiong, Y., and Fu, H.: Investigations on the microstructure and room temperature fracture toughness of directionally solidified NiAl–Cr(Mo) eutectic alloy. Intermetallics 57, 25 (2015).
13. Liu, C.T. and Horton, J.A.: Effect of refractory alloying additions on mechanical properties near-stoichiometric NiAl. Mater. Sci. Eng., A 192/193, 170 (1995).
14. Lin Lü, B., Qing Chen, G., Qu, S., Su, H., and Long Zhou, W.: Effect of alloying elements on 〈111〉 dislocation in NiAl: A first-principles study. Phys. B Condens. Matter 417, 9 (2013).
15. Liu, E., Jia, J., Bai, Y., Wang, W., and Gao, Y.: Study on preparation and mechanical property of nanocrystalline NiAl intermetallic. Mater. Des. 53, 596 (2014).
16. Sheng, L., Zhang, W., Guo, J., Yang, F., Liang, Y., and Ye, H.: Effect of Au addition on the microstructure and mechanical properties of NiAl intermetallic compound. Intermetallics 18(4), 740 (2010).
17. Sheng, L., Wang, L., Xi, T., Zheng, Y., and Ye, H.: Microstructure, precipitates and compressive properties of various holmium doped NiAl/Cr(Mo,Hf) eutectic alloys. Mater. Des. 32(10), 4810 (2011).
18. Tang, L.Z., Zhang, Z.G., Li, S.S., and Gong, S.K.: Mechanical behaviors of NiAl–Cr(Mo)-based near eutectic alloy with Ti, Hf, Nb and W additions. Trans. Nonferrous Met. Soc. China 20(2), 212 (2010).
19. Prasad, Y.V.R.K.: Processing maps: A status report. J. Mater. Eng. Perform. 12(6), 638 (2003).
20. Prasad, Y.V.R.K., Gegel, H.L., Doraivelu, S.M., Malas, J.C., Morgan, J.T., Lark, K.A., and Barker, D.R.: Modelling of dynamic material behavior in hot deformation: Forging of Ti-6242. Metall. Trans. A 15, 1883 (1984).
21. Gangolu, S., Gourav Rao, A., Sabirov, I., Kashyap, B.P., Prabhu, N., and Deshmukh, V.P.: Development of constitutive relationship and processing map for Al–6.65Si–0.44Mg alloy and its composite with B4C particulates. Mater. Sci. Eng., A 655, 256 (2016).
22. Shu, S., Qiu, F., Tong, C., Shan, X., and Jiang, Q.: Effects of Fe, Co and Ni elements on the ductility of TiAl alloy. J. Alloys Compd. 617, 302 (2014).
23. Biswas, A., Singh, G., Sarkar, S.K., Krishnan, M., and Ramamurty, U.: Hot deformation behavior of Ni–Fe–Ga-based ferromagnetic shape memory alloy—A study using processing map. Intermetallics 54, 69 (2014).
24. Wu, Y., Zhang, M., Xie, X., Dong, J., Lin, F., and Zhao, S.: Hot deformation characteristics and processing map analysis of a new designed nickel-based alloy for 700 °C A-USC power plant. J. Alloys Compd. 656, 119 (2016).
25. Zhao, H.Z., Xiao, L., Ge, P., Sun, J., and Xi, Z.P.: Hot deformation behavior and processing maps of Ti-1300 alloy. Mater. Sci. Eng., A 604, 111 (2014).
26. Jiang, H., Dong, J., Zhang, M., Zheng, L., and Yao, Z.: Hot deformation characteristics of alloy 617B nickel-based superalloy: A study using processing map. J. Alloys Compd. 647, 338 (2015).
27. Serajzadeh, S.: Serrated flow during warm forming of low carbon steels. Mater. Lett. 57(29), 4515 (2003).
28. Chen, R.S., Guo, J.T., and Zhou, J.Y.: Elevated temperature compressive behavior of cast NiAl–9Mo(1Hf) eutectic alloys. Mater. Lett. 42, 75 (2000).
29. Prasad, Y.V.R.K. and Seshacharyulu, T.: Modelling of hot deformation for microstructural control. Int. Mater. Rev. 43(6), 243 (2013).
30. Sun, Y., Wan, Z., Hu, L., and Ren, J.: Characterization of hot processing parameters of powder metallurgy TiAl-based alloy based on the activation energy map and processing map. Mater. Des. 86, 922 (2015).
31. Zhang, P., Hu, C., Ding, C-g., Zhu, Q., and Qin, H-y.: Plastic deformation behavior and processing maps of a Ni-based superalloy. Mater. Des. 65, 575 (2015).


The hot deformation behavior and processing map of powder metallurgy NiAl-based alloy

  • Zhenhan Huang (a1), Zhen Lu (a1), Shaosong Jiang (a1) and Kaifeng Zhang (a1)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed