Skip to main content Accessibility help

Hot deformation behavior and microstructural evolution of Mg–Zn–Ca–La alloys

  • Jiqiang Qi (a1), Yuzhou Du (a1), Bailing Jiang (a1) and Mingjie Shen (a2)


The hot deformation behavior and processing characteristics of Mg–3Zn–0.3Ca–0.4La (wt%) alloys were investigated by hot compression deformation. The results suggested that deformation parameters had significant effects on deformation behavior and dynamic recrystallization of the Mg–Zn–Ca–La alloy. The average activation energy of deformation was calculated to be 188.9 kJ/mol. The processing map was constructed and analyzed based on the dynamic material model, and the optimum hot working window of the alloy was determined to be the temperature of 350 °C and the strain rates between 0.001 and 0.01 s−1. Furthermore, the DRX kinetic model of the Mg–3Zn–0.3Ca–0.4La (wt%) alloy was established, which implied that incomplete dynamic recrystallization occurred for the Mg–Zn–Ca–La alloy in the present work. Microstructure analysis indicated that deformation parameters played a critical role on the microstructure optimization. The dynamically recrystallized (DRXed) region fraction and the DRXed grain size were increased with the increase of deformation temperature and decrease of deformation rates.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Wang, X.J., Xu, D.K., Wu, R.Z., Chen, X.B., Peng, Q.M., Jin, L., Xin, Y.C., Zhang, Z.Q., Liu, Y., Chen, X.H., Chen, G., Deng, K.K., and Wang, H.Y.: What is going on in magnesium alloys? J. Mater. Sci. Technol. 34, 245247 (2018).
2.Tong, L.B., Zhang, J.B., Zhang, Q.X., Jiang, Z.H., Xu, C., Kamado, S., Zhang, D.P., Meng, J., Cheng, L.R., and Zhang, H.J.: Effect of warm rolling on the microstructure, texture and mechanical properties of extruded Mg–Zn–Ca–Ce/La alloy. Mater. Charact. 115, 17 (2016).
3.Xu, C., Pan, J.P., Nakata, T., Qiao, X.G., Chi, Y.Q., Zheng, M.Y., and Kamado, S.: Hot compression deformation behavior of Mg–9Gd–2.9Y–1.9Zn–0.4Zr–0.2Ca (wt%) alloy. Mater. Charact. 124, 4049 (2016).
4.Xu, C., Zheng, M., Xu, S., Wu, K., Wang, E., Fan, G., and Kamado, S.: Improving strength and ductility of Mg–Gd–Y–Zn–Zr alloy simultaneously via extrusion, hot rolling and ageing. Mater. Sci. Eng., A 643, 137141 (2015).
5.Liu, X.B., Chen, R.S., and Han, E.H.: Effects of ageing treatment on microstructures and properties of Mg–Gd–Y–Zr alloys with and without Zn additions. J. Alloys Compd. 465, 232238 (2008).
6.Zhang, L., Zhang, J., Xu, C., Liu, S., Jiao, Y., Xu, L., Wang, Y., Meng, J., Wu, R., and Zhang, M.: Investigation of high-strength and superplastic Mg–Y–Gd–Zn alloy. Mater. Des. 61, 168176 (2014).
7.Pourbahari, B., Emamy, M., and Mirzadeh, H.: Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Prog. Nat. Sci.: Mater. Int. 27, 228235 (2017).
8.Pourbahari, B., Mirzadeh, H., and Emamy, M.: Toward unraveling the effects of intermetallic compounds on the microstructure and mechanical properties of Mg–Gd–Al–Zn magnesium alloys in the as-cast, homogenized, and extruded conditions. Mater. Sci. Eng., A 680, 3946 (2017).
9.Pourbahari, B., Mirzadeh, H., and Emamy, M.: The effects of grain refinement and rare earth intermetallics on mechanical properties of as-cast and wrought magnesium alloys. J. Mater. Eng. Perform. 27, 13271333 (2018).
10.Pourbahari, B., Emamy, M., and Mirzadeh, H.: Synergistic effect of Al and Gd on enhancement of mechanical properties of magnesium alloys. Prog. Nat. Sci.: Mater. Int. 27, 228235 (2017).
11.Kang, J-w., Wang, C-j., Deng, K-k., Nie, K-b., Bai, Y., and Li, W-j.: Microstructure and mechanical properties of Mg–4Zn–0.5Ca alloy fabricated by the combination of forging, homogenization and extrusion process. J. Alloys Compd. 720, 196206 (2017).
12.Mendis, C.L., Oh-ishi, K., Kawamura, Y., Honma, T., Kamado, S., and Hono, K.: Precipitation-hardenable Mg–2.4Zn–0.1Ag–0.1Ca–0.16Zr (at.%) wrought magnesium alloy. Acta Mater. 57, 749760 (2009).
13.Kim, Y.M., Chang, D.Y., Kim, H.S., and You, B.S.: Key factor influencing the ignition resistance of magnesium alloys at elevated temperatures. Scripta Mater. 65, 958961 (2011).
14.You, B.S., Park, W.W., and Chung, I.S.: The effect of calcium additions on the oxidation behavior in magnesium alloys. Scripta Mater. 42, 10891094 (2000).
15.Wu, G., Fan, Y., Gao, H., Zhai, C., and Zhu, Y.P.: The effect of Ca and rare earth elements on the microstructure, mechanical properties and corrosion behavior of AZ91D. Mater. Sci. Eng., A 408, 255263 (2005).
16.Vogel, M., Kraft, O., and Arzt, E.: Effect of calcium additions on the creep behavior of magnesium die-cast alloy ZA85. Metall. Mater. Trans. A 36, 17131719 (2005).
17.Chino, Y., Ueda, T., Otomatsu, Y., Sassa, K., Huang, X., Suzuki, K., and Mabuchi, M.: Effects of Ca on tensile properties and stretch formability at room temperature in Mg–Zn and Mg–Al alloys. Mater. Trans. 52, 14771482 (2011).
18.Zhang, C., Guan, S., Wang, L., Zhu, S., and Chang, L.: The microstructure and corrosion resistance of biological Mg–Zn–Ca alloy processed by high-pressure torsion and subsequently annealing. J. Mater. Res. 32, 10611072 (2017).
19.Stanford, N. and Barnett, M.R.: The origin of “rare earth” texture development in extruded Mg-based alloys and its effect on tensile ductility. Mater. Sci. Eng., A 496, 399408 (2008).
20.Stanford, N., Atwell, D., and Barnett, M.R.: The effect of Gd on the recrystallisation, texture and deformation behaviour of magnesium-based alloys. Acta Mater. 58, 67736783 (2010).
21.Du, Y., Zheng, M., Qiao, X., Peng, W., and Jiang, B.: Effect of La addition on the microstructure and mechanical properties of Mg–6 wt% Zn alloys. Mater. Sci. Eng., A 673, 4754 (2016).
22.Wang, G.G., Huang, G.S., Chen, X., Deng, Q.Y., Tang, A.T., Jiang, B., and Pan, F.S.: Effects of Zn addition on the mechanical properties and texture of extruded Mg–Zn–Ca–Ce magnesium alloy sheets. Mater. Sci. Eng., A 705, 4654 (2017).
23.Du, Y.Z., Qiao, X.G., Zheng, M.Y., Wu, K., and Xu, S.W.: The microstructure, texture and mechanical properties of extruded Mg–5.3Zn–0.2Ca–0.5Ce (wt%) alloy. Mater. Sci. Eng., A 620, 164171 (2015).
24.Du, Y.Z., Qiao, X.G., Zheng, M.Y., Wu, K., and Xu, S.W.: Development of high-strength, low-cost wrought Mg–2.5 mass% Zn alloy through micro-alloying with Ca and La. Mater. Des. 85, 549557 (2015).
25.Jarzębska, A., Bieda, M., Kawałko, J., Rogal, Ł., Koprowski, P., Sztwiertnia, K., Pachla, W., and Kulczyk, M.: A new approach to plastic deformation of biodegradable zinc alloy with magnesium and its effect on microstructure and mechanical properties. Mater. Lett. 211, 5861 (2018).
26.Zhang, C-C., Wang, C., Zha, M., Wang, H-Y., Yang, Z-Z., and Jiang, Q-C.: Microstructure and tensile properties of rolled Mg–4Al–2Sn–1Zn alloy with pre-rolling deformation. Mater. Sci. Eng., A 719, 132139 (2018).
27.Yu, Z., Huang, Y., Gan, W., Zhong, Z., Hort, N., and Meng, J.: Effects of extrusion ratio and annealing treatment on the mechanical properties and microstructure of a Mg–11Gd–4.5Y–1Nd–1.5Zn–0.5Zr (wt%) alloy. J. Mater. Sci. 52, 66706686 (2017).
28.Liu, X., Zhang, Z., Hu, W., Le, Q., Bao, L., and Cui, J.: Effects of extrusion speed on the microstructure and mechanical properties of Mg9Gd3Y1.5Zn0.8Zr alloy. J. Mater. Sci. Technol. 32, 313319 (2016).
29.Kim, B., Baek, S-M., Lee, J.G., and Park, S.S.: Enhanced strength and plasticity of Mg–6Zn–0.5Zr alloy by low-temperature indirect extrusion. J. Alloys Compd. 706, 5662 (2017).
30.Ou, L., Nie, Y., and Zheng, Z.: Strain compensation of the constitutive equation for high temperature flow stress of a Al–Cu–Li alloy. J. Mater. Eng. Perform. 23, 2530 (2014).
31.Liao, H., Wu, Y., Zhou, K., and Yang, J.: Hot deformation behavior and processing map of Al–Si–Mg alloys containing different amount of silicon based on Gleebe-3500 hot compression simulation. Mater. Des. 65, 10911099 (2015).
32.Lu, J.W., Yin, D.D., Huang, G.H., Quan, G.F., Zeng, Y., Zhou, H., and Wang, Q.D.: Plastic anisotropy and deformation behavior of extruded Mg–Y sheets at elevated temperatures. Mater. Sci. Eng., A 700, 598608 (2017).
33.Lv, B-J., Peng, J., Wang, Y-J., An, X-Q., Zhong, L-P., Tang, A-T., and Pan, F-S.: Dynamic recrystallization behavior and hot workability of Mg–2.0Zn–0.3Zr–0.9Y alloy by using hot compression test. Mater. Des. 53, 357365 (2014).
34.Nie, K., Kang, X., Deng, K., Wang, T., Guo, Y., and Wang, H.: Effect of SiC nanoparticles on hot deformation behavior and processing maps of magnesium alloy AZ91. Nanomaterials 8, 82 (2018).
35.Mirzadeh, H., Roostaei, M., Parsa, M.H., and Mahmudi, R.: Rate controlling mechanisms during hot deformation of Mg–3Gd–1Zn magnesium alloy: Dislocation glide and climb, dynamic recrystallization, and mechanical twinning. Mater. Des. 68, 228231 (2015).
36.Mirzadeh, H.: Quantification of the strengthening effect of reinforcements during hot deformation of aluminum-based composites. Mater. Des. 65, 8082 (2015).
37.Lino, R., Guadanini, L.G.L., Silva, L.B., Neto, J.G.C., and Barbosa, R.: Effect of Nb and Ti addition on activation energy for austenite hot deformation. J. Mater. Res. Technol. (2018). doi: 10.1016/j.jmrt.2017.11.002.
38.Odoh, D., Mahmoodkhani, Y., and Wells, M.: Effect of alloy composition on hot deformation behavior of some Al–Mg–Si alloys. Vacuum 149, 248255 (2018).
39.Zeng, Z.R., Zhu, Y.M., Xu, S.W., Bian, M.Z., Davies, C.H.J., Birbilis, N., and Nie, J.F.: Texture evolution during static recrystallization of cold-rolled magnesium alloys. Acta Mater. 105, 479494 (2016).
40.Sun, C.C., Liu, K., Wang, Z.H., Shu-Bo, L.I., Xian, D.U., and Wen-Bo, D.U.: Hot deformation behaviors and processing maps of Mg–Zn–Er alloys based on Gleeble–1500 hot compression simulation. Trans. Nonferrous Met. Soc. 26, 31233134 (2016).
41.Liu, D., Liu, Y., Zhao, Y., Huang, Y., and Chen, M.: The hot deformation behavior and microstructure evolution of HA/Mg–3Zn–0.8Zr composites for biomedical application. Trans. Nonferrous Met. Soc. 77, 690697 (2017).
42.Wang, G., Xu, L., Wang, Y., Zheng, Z., Cui, Y., and Yang, R.: Processing maps for hot working behavior of a PM TiAl alloy. J. Mater. Sci. Technol. 27, 893898 (2011).
43.Yu, J., Zhang, Z., Wang, Q., Yin, X., Cui, J., and Qi, H.: Dynamic recrystallization behavior of magnesium alloys with LPSO during hot deformation. J. Alloys Compd. 704, 382389 (2017).
44.Fatemi-Varzaneh, S.M., Zarei-Hanzaki, A., and Beladi, H.: Dynamic recrystallization in AZ31 magnesium alloy. Mater. Sci. Eng., A 456, 5257 (2007).
45.Barnett, M.R., Keshavarz, Z., Beer, A.G., and Atwell, D.: Influence of grain size on the compressive deformation of wrought Mg–3Al–1Zn. Acta Mater. 52, 50935103 (2004).


Hot deformation behavior and microstructural evolution of Mg–Zn–Ca–La alloys

  • Jiqiang Qi (a1), Yuzhou Du (a1), Bailing Jiang (a1) and Mingjie Shen (a2)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed