Skip to main content Accessibility help
×
Home

Homogeneous fabrication and densification of zirconia-toughened alumina (ZTA) composite by the surface-induced coating

  • Hyun M. Jang (a1) and Jong H. Moon (a1)

Abstract

This article proposes a new scheme for fabricating homogeneous Al2O3–ZrO2 composite, in which a thermodynamic theory of interfacial electrochemical phenomena is applied. The theory predicts that a heterogeneous Al2O3 interface in colloidal dispersion can induce an enhanced concentration of the ionic species needed for a selective formation of the ZrO2 precursor at the Al2O3/aqueous solution interface. Based on this proposition, a homogeneous Al2O3–ZrO2 composite powder was fabricated by a surface-induced coating of the fine ZrO2 precursor on the kinetically stable colloid particles of Al2O3. The composite prepared by the surface-induced coating was characterized by a uniform spatial distribution of the dispersed ZrO2 phase and by the absence of large ZrO2 grains formed from hard ZrO2 agglomerates. The composite also showed highly uniform grain size distribution of both the dispersed ZrO2 and the matrix Al2O3 phases. The uniform grain size distribution of the matrix phase indicates that the homogeneous coating of the fine ZrO2 particles is effectively pinning the Al2O3 grain boundaries.

Copyright

References

Hide All
1Garvie, R. C. and Hannink, R. H. J., Nature 258, 703 (1975).
2Claussen, N., J. Am. Ceram. Soc. 59, 49 (1976).
3Porter, D. L., Evans, A. G., and Heuer, A. H., Acta Metall. 27, 1649 (1979).
4Evans, A. G. and Heuer, A. H., J. Am. Ceram. Soc. 63, 241 (1980).
5Heuer, A. H., Claussen, N., Kriven, W. M., and Rühle, M., J. Am. Ceram. Soc. 65, 642 (1982).
6Evans, A. G., in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A. H. (American Ceramic Society, Columbus, OH, 1984), p. 193.
7Claussen, N., Steeb, J., and Pabst, R. F., Am. Ceram. Soc. Bull. 56, 559 (1977).
8Faber, K. T., in Advances in Ceramics, Vol. 12, Science and Technology of Zirconia II, edited by Claussen, N., Rühle, M., and Heuer, A. H. (American Ceramic Society, Columbus, OH, 1984), p. 293.
9Rühle, M., Claussen, N., and Heuer, A. H., J. Am. Ceram. Soc. 69, 195 (1986).
10Claussen, N. and Rühle, M., in Advances in Ceramics, Vol. 3, Science and Technology of Zirconia, edited by Heuer, A. H. and Hobbs, L. W. (American Ceramic Society, Columbus, OH, 1981), p. 137.
11Evans, A. G., Burlingame, N., Drory, M., and Kriven, W. M., Acta Metall. 29, 447 (1981).
12Lange, F. F. and Metcalf, M., J. Am. Ceram. Soc. 66, 398 (1983).
13Aksay, I. A., Lange, F. F., and Davis, B. I., J. Am. Ceram. Soc. 66, C-60 (1985).
14Fegley, B., Jr., White, P., and Bowen, H. K., J. Am. Ceram. Soc. 68, C-60 (1985).
15Baik, S., Bleier, A., and Becher, P. F., in Better Ceramics through Chemistry II, Mater. Res. Soc. Symp. Proc, edited by Brinker, C. J., Clark, D. E., and Ulrich, D. R. (Materials Research Society, Pittsburgh, PA, 1986), Vol. 73, p. 791.
16Vold, R. D. and Vold, M. J., Colloid and Interface Chemistry (Addison-Wesley, Reading, MA, 1983), Chap. 8
17Furusawa, K. and Matsumoto, M., in Electrical Phenomena at Interfaces, edited by Kitahara, A. and Watanabe, A. (Marcel Dekker, New York, 1984), p. 225.
18Burke, J., The Kinetics of Phase Transformations in Metals (Pergamon Press, New York, 1965), Chap. 5.
19James, R. O. and Healy, T. W., J. Colloid Interface Sci. 40, 65 (1972).
20Kinniburgh, D. G. and Jackson, M. L., in Adsorption of Inorganics at Solid-Liquid Interfaces, edited by Anderson, M. A. and Rubin, A. J. (Ann Arbor Science Pub., Ann Arbor, MI, 1981), p. 91.
21Jang, H. M. and Fuerstenau, D. W., Colloids and Surfaces 21, 235 (1986).
22Srinivasan, R., Harris, M. B., Simpson, S. F., DeAngelis, R. J., and Davis, B. H., J. Mater. Res. 3, 787 (1988).
23Wiese, G. R., James, R. O., and Healy, T. W., Disc. Faraday Soc. 52, 302 (1971).
24Bérubé, Y. G. and de Bruyn, P. L., J. Colloid Interface Sci. 27, 305 (1968).
25Wiersema, P. H., Loeb, A. L., and Overbeek, J.Th.G., J. Colloid Interface Sci. 22, 78 (1966).
26Timasheff, S. N., J. Colloid Interface Sci. 21, 489 (1966).
27Overbeek, J.Th. G., in Emergent Process Methods for High-Technology Ceramics, Materials Science Research, edited by Davis, R. F., Palmour, H., III, and Porter, R. L. (Plenum Press, New York and London, 1984), Vol. 17, p. 25.
28Underwood, E. E., in Quantitative Stereology (Addison-Wesley, Reading, MA, 1970), p. 109.
29Wurst, J. C. and Nelson, J. A., J. Am. Ceram. Soc. 55, 109 (1972).
30Clark, D. E. and Lannutti, J. J., in Ultrastructure Processing of Ceramics, Glasses, and Composites, edited by Hench, L. L. and Ulrich, D. R. (John Wiley & Sons, Inc., New York, 1984), p. 126.
31Pavia, D. L., Lampman, G. M., and Kriz, G. S., Jr., Introduction to Spectroscopy (W. B. Saunders, Philadelphia, PA, 1979), Chap. 2.
32Lange, F. F., J. Mater. Sci. 17, 225 (1982).

Homogeneous fabrication and densification of zirconia-toughened alumina (ZTA) composite by the surface-induced coating

  • Hyun M. Jang (a1) and Jong H. Moon (a1)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed