Skip to main content Accessibility help
×
Home

A high-throughput strategy to screen interfacial diffusion barrier materials for thermoelectric modules

  • Ming Gu (a1), Shengqiang Bai (a1), Jiehua Wu (a1), Jincheng Liao (a1), Xugui Xia (a1), Ruiheng Liu (a1) and Lidong Chen (a1)...

Abstract

Diffusion barrier materials play an important role in both structure reliability and performance stability of thermoelectric (TE) modules. Preferred barrier materials are screened out from various candidates by comparing the interdiffusion at the barrier material/TE substrate interfaces. Traditionally, for each barrier material candidate, complicated fabrication processing of TE elements (electrode/barrier material/TE material) must be finished to obtain relative interfaces, which makes the screening costly and time consuming. In this article, using a high-throughput strategy, we developed a high-efficiency screening method of barrier materials. By cosintering the mixture of TE substrate material and various barrier material candidates simply following the TE material’s sintering parameters, various microinterfaces were integrated to one single sample. This enables parallel aging and microstructure characterization of different interfaces, and preferred barrier materials can be swiftly screened out. As a result, it makes the design and optimization of TE modules much more efficient and economical.

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: bsq@mail.sic.ac.cn

References

Hide All
1.Holloway, K. and Fryer, P.M.: Tantalum as a diffusion barrier between copper and silicon. Appl. Phys. Lett. 57, 17361738 (1990).
2.Nakano, H., Itabashi, T., and Akahoshi, H.: Electroless deposited cobalt-tungsten-boron capping barrier metal on damascene copper interconnection. J. Electrochem. Soc. 152, C163C166 (2005).
3.Qu, X-P., Tan, J-J., Zhou, M., Chen, T., Xie, Q., Ru, G-P., and Li, B-Z.: Improved barrier properties of ultrathin Ru film with TaN interlayer for copper metallization. Appl. Phys. Lett. 88, 151912 (2006).
4.Civale, Y., Croes, K., Miyamori, Y., Velenis, D., Redolfi, A., Thangaraju, S., Van Ammel, A., Cherman, V., Van der Plas, G., Cockburn, A., Gravey, V., Kumar, N., Cao, Z., Travaly, Y., Tökei, Z., Beyne, E., and Swinnen, B.: On the thermal stability of physically-vapor-deposited diffusion barriers in 3D Through-Silicon Vias during IC processing. Microelectron. Eng. 106, 155159 (2013).
5.Brandner, M., Bram, M., Jan, F., Buchkremer, H.P., and Stöver, D.: Electrically conductive diffusion barrier layers for metal-supported SOFC. Solid State Ionics 179, 15011504 (2008).
6.Maric, R., Neagu, R., and Zhang-Steenwinkel, Y.: Reactive spray deposition technology—An one-step deposition technique for solid oxide fuel cell barrier layers. J. Power Sources 195, 81988201 (2010).
7.Lee, S-I., Park, M., and Hong, J.: Fabrication of dense and defect-free diffusion barrier layer via constrained sintering for solid oxide fuel cells. J. Eur. Ceram. Soc. 37, 32193223 (2017).
8.Haynes, J.A., Zhang, Y., Cooley, K.M., Walker, L., Reeves, K.S., and Pint, B.A.: High-temperature diffusion barriers for protective coatings. Surf. Coat. Technol. 188–189, 153157 (2004).
9.Wang, Y., Guo, H-b., and Peng, H.: Diffusion barrier behaviors of (Ru,Ni)Al/NiAl coatings on Ni-based superalloy substrate. Intermetallics 19, 191195 (2011).
10.Joly, A., Brun, P., and Lacombe, J.: Structural characterization of an electrically insulating diffusion barrier on a plasma-sprayed ceramic for severe environment applications. Surf. Coat. Technol. 220, 204208 (2013).
11.Zhao, D., Li, X., He, L., Jiang, W., and Chen, L.: Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging. J. Alloys Compd. 477, 425431 (2009).
12.Hsu, H-H., Cheng, C-H., Chiou, S-H., Huang, C-H., Liu, C-M., Lin, Y-L., Chao, W-H., Yang, P-H., Chang, C-Y., and Cheng, C-P.: Structural stability of diffusion barriers in thermoelectric SbTe: From first-principles calculations to experimental results. J. Alloys Compd. 588, 633637 (2014).
13.Gu, M., Bai, S., Xia, X., Huang, X., Li, X., Shi, X., and Chen, L.: Study on the high temperature interfacial stability of Ti/Mo/Yb0.3Co4Sb12 thermoelectric joints. Appl. Sci. 7, 952 (2017).
14.Hsieh, H-C., Wang, C-H., Lin, W-C., Chakroborty, S., Lee, T-H., Chu, H-S., and Wu, A.T.: Electroless Co–P diffusion barrier for n-PbTe thermoelectric material. J. Alloys Compd. 728, 10231029 (2017).
15.Rowe, D.M.: Thermoelectrics Handbook: Macro to Nano (CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2006); ch. 1, pp. 212.
16.Brostow, W., Datashvili, T., Hagg Lobland, H.E., Hilbig, T., Su, L., Vinado, C., and White, J.B.: Bismuth telluride-based thermoelectric materials: Coatings as protection against thermal cycling effects. J. Mater. Res. 27, 29302936 (2012).
17.Brostow, W., Chen, I.K., and White, J.B.: Effects of polymeric coatings on service life of bismuth telluride-based thermoelectric materials. Sust. Energ. Fuel 1, 13761380 (2017).
18.Saber, H.H. and El-Genk, M.S.: Effects of metallic coatings on the performance of skutterudite-based segmented unicouples. Energy Convers. Manage. 48, 13831400 (2007).
19.Dong, H., Li, X., Tang, Y., Zou, J., Huang, X., Zhou, Y., Jiang, W., Zhang, G-j., and Chen, L.: Fabrication and thermal aging behavior of skutterudites with silica-based composite protective coatings. J. Alloys Compd. 527, 247251 (2012).
20.El-Genk, M.S. and Saber, H.H.: High efficiency segmented thermoelectric for operation between 973 K and 300 K. Energy Convers. Manage. 44, 10691088 (2003).
21.Joshi, G., Lee, H., Lan, Y., Wang, X., Zhu, G., Wang, D., Gould, R.W., Cuff, D.C., Tang, M.Y., Dresselhaus, M.S., Chen, G., and Ren, Z.: Enhanced thermoelectric figure-of-merit in nanostructured p-type silicon germanium bulk alloys. Nano Lett. 8, 46704674 (2008).
22.Appel, O., Zilber, T., Kalabukhov, S., Beerib, O., and Gelbstein, Y.: Morphological effects on the thermoelectric properties of Ti0.3Zr0.35Hf0.35NiSn alloys following phase separation. J. Mater. Chem. 3, 1165311659 (2015).
23.Sumithra, S., Takas, N.J., Misra, D.K., Nolting, W.M., Poudeu, P.F.P., and Stokes, K.L.: Enhancement in thermoelectric figure of merit in nanostructured Bi2Te3 with semimetal nanoinclusions. Adv. Energy Mater. 1, 11411147 (2011).
24.Gelbstein, Y.: Phase morphology effects on the thermoelectric properties of Pb0.25Sn0.25Ge0.5Te. Acta Mater. 61, 14991507 (2013).
25.Liu, H., Shi, X., Xu, F., Zhang, L., Zhang, W., Chen, L., Li, Q., Uher, C., Day, T., and Jeffrey Snyder, G.: Copper ion liquid-like thermoelectrics. Nat. Mater. 11, 422425 (2012).
26.Jiang, B., Qiu, P., Chen, H., Zhang, Q., Zhao, K., Ren, D., Shi, X., and Chen, L.: An argyrodite-type Ag9GaSe6 liquid-like material with ultralow thermal conductivity and high thermoelectric performance. Chem. Commun. 53, 1165811661 (2017).
27.Zhao, X.Y., Shi, X., Chen, L.D., Zhang, W.Q., Zhang, W.B., and Pei, Y.Z.: Synthesis and thermoelectric properties of Sr-filled skutterudite SryCo4Sb12. J. Appl. Phys. 99, 053711 (2006).
28.Tang, X., Chen, L., Goto, T., and Hirai, T.: Effects of Ce filling fraction and Fe content on the thermoelectric properties of Co-rich CeyFexCo4−xSb12. J. Mater. Res. 16, 837843 (2001).
29.Gu, M., Xia, X., Huang, X., Bai, S., Li, X., and Chen, L.: Study on the interfacial stability of p-type Ti/CeyFexCo4−xSb12 thermoelectric joints at high temperature. J. Alloys Compd. 671, 238244 (2016).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed