Skip to main content Accessibility help

High-temperature deformation processing maps for a NiTiCu shape memory alloy

  • Vyasa V. Shastry (a1), Bikas Maji (a2), Madangopal Krishnan (a2) and Upadrasta Ramamurty (a3)


The properties of widely used Ni–Ti-based shape memory alloys (SMAs) are highly sensitive to the underlying microstructure. Hence, controlling the evolution of microstructure during high-temperature deformation becomes important. In this article, the “processing maps” approach is utilized to identify the combination of temperature and strain rate for thermomechanical processing of a Ni42Ti50Cu8 SMA. Uniaxial compression experiments were conducted in the temperature range of 800–1050 °C and at strain rate range of 10−3 and 102 s−1. Two-dimensional power dissipation efficiency and instability maps have been generated and various deformation mechanisms, which operate in different temperature and strain rate regimes, were identified with the aid of the maps and complementary microstructural analysis of the deformed specimens. Results show that the safe window for industrial processing of this alloy is in the range of 800–850 °C and at 0.1 s−1, which leads to grain refinement and strain-free grains. Regions of the instability were identified, which result in strained microstructure, which in turn can affect the performance of the SMA.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Otsuka, K. and Wayman, C.M.: Shape Memory Materials (Cambridge University Press, MA, 1998).
2.Otsuka, K. and Ren, X.: Physical metallurgy of Ti Ni based shape memory alloys. Prog. Mater. Sci. 50, 511678 (2005).
3.Duerig, T.W., Pelton, A.R., and Stockel, D.: An overview of nitinol medical applications. Mater. Sci. Eng., A 273275, 149 (1999).
4.Pelton, A.R., Stockel, D., and Duerig, T.W.: Medical uses of nitinol. Mater. Sci. Forum 327328, 63 (2000).
5.Cui, Z.D., Man, H.C., Cheng, F.T., and Yue, T.M.: Cavitation erosion–corrosion characteristics of laser surface modified NiTi shape memory alloy. Surf. Coat. Tech. 162, 147 (2003).
6.Rocher, P., El Medawar, L., Hornez, J-C., Traisnel, M., Breme, J., and Hildebrand, H.F.: Biocorrosion and cytocompatibility of NiTi shape memory alloys. Scr. Mater. 50, 255 (2004).
7.Jean, R-D. and Tsai, J-C.: Effect of hot working on the martensitic transformation of Ni-Ti alloys. Scr. Metall. Mater. 30, 1027 (1994).
8.Karaman, I., Ersin Karaca, H., Luo, Z.P., and Maier, H.J.: The effect of severe marforming on shape memory characteristics of a Ti rich NiTi alloy processed using equal channel angular extrusion. Metall. Mater. Trans. A 34, 2527 (2003).
9.Kurita, T., Matsumoto, H., and Abe, H.: Transformation behavior in rolled NiTi. J. Alloy. Comp. 381, 158 (2004).
10.Favier, D., Liu, Y., Orgeas, L., Sandel, A., Debove, L., and Comte-Gaz, P.: Influence of thermomechanical processing on the superelastic properties of a Ni-rich nitinol shape memory alloy. Mater. Sci. Eng., A 429, 130 (2006).
11.Popov, N.N., Prokoshkin, S.D., Sidorkin, M.Yu., Sysoeva, T.I., Borovkov, D.V., Aushev, A.A., Kostylev, I.V., and Gusarov, A.E.: Effect of thermomechanical treatment on the structure and functional properties of a 45Ti-45Ni-10Nb alloy. Russ. Metall. 1, 59 (2007).
12.Kockar, B., Karaman, I., Kulkarni, A., Chumlyakov, Y., and Kireeva, I.V.: Effect of severe ausforming via equal channel angular extrusion on the shape memory response of a NiTi alloy. J. Nucl. Mater. 361, 298 (2007).
13.Sadrnezhaad, S.K. and Mirabolghasemi, S.H.: Optimum temperature for recovery and recrystallization of 52Ni48Ti shape memory alloy. Mater. Des. 28, 1945 (2007).
14.Paula, A.S., Mahesh, K.K., and Fernandes, F.M.B.: Evolution of phase transformations after multiple steps of marforming in Ti- rich Ni-Ti SMA. Eur. Phys. J. Spec. Top. 158, 45 (2008).
15.Paula, A.S., Mahesh, K.K., Santos, C.M.L.D., Fernandes, F.M.B. and Viana, C.S.D.C.: Thermomechanical behavior of Ti-rich NiTi shape memory alloys. Mater. Sci. Eng., A 481482, 146 (2008).
16.Lin, H.C. and Wu, S.K.: Effects of hot rolling on the martensitic transformation of an equiatomic Ti-Ni alloy. Mater. Sci. Eng., A 158, 87 (1992).
17.Suzuki, H.G., Takakura, E., and Eylon, D.: Hot strength and hot ductility of titanium alloys—a challenge for continuous casting process. Mater. Sci. Eng., A 263, 230 (1999).
18.Frick, C.P., Ortega, A.M., Tyber, J., Maksound, A.El.M., Maier, H.J., Liu, Y., and Gall, K.: Thermal processing of polycrystalline NiTi shape memory alloys. Mater. Sci. Eng., A 405, 34 (2005).
19.Dehghani, K. and Khamei, A.A.: Hot deformation behavior of 60Nitinol (Ni60 wt%–Ti40 wt%) alloy: Experimental and computational studies. Mater. Sci. Eng., A 527, 684 (2010).
20.Khamei, A.A. and Dehghani, K.: Modeling the hot-deformation behavior of Ni60 wt%–Ti40 wt% intermetallic alloy. J. Alloy. Comp. 490, 377 (2010).
21.Morakabati, M., Kheirandish, Sh., Aboutalebi, M.Karimi Taheri, A., and Abbasi, S.M.: The effect of Cu addition on the hot deformation behavior of NiTi shape memory alloys. J. Alloy. Comp. 499, 57 (2010).
22.Melton, K.N. and Mercier, O.: Deformation behaviour of NiTi alloys. Metall. Trans. A 9, 1487 (1978).
23.Nam, T.H., Saburi, T., Kawamura, Y., and Shimizu, K.: Shape memory characteristics associated with the B2↔B19 and B19↔B19’ transformations in a Ti-40Ni-10 Cu (at.%) alloy. Mater. Trans. JIM 31, 262 (1990).
24.Nam, T.H., Saburi, T., and Shimizu, K.: Cu-content dependence of shape memory characteristics in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 959 (1990).
25.Nam, T.H., Saburi, T., Nakata, Y., and Shimizu, K.: Shape memory characteristics and lattice deformation in Ti-Ni-Cu alloys. Mater. Trans. JIM 31, 1050 (1990).
26.Nam, T.H., Saburi, T., and Shimizu, K.: Effect of thermo-mechanical treatment on shape memory characteristics in a Ti-40Ni-10Cu (at%) alloy. Mater. Trans. JIM 32, 814 (1991).
27.Lo, Y.C., Wu, S.K., and Horng, H.E.: A study of B2↔B19↔B19′ two-stage martensitic transformation in a Ti50Ni40Cu10 alloy. Acta Metall. Mater. 41, 747 (1993).
28.Tang, W., Sandstrom, R., Wei, Z.G., and Miyazak, S.: Experimental investigation and thermodynamic calculation of the Ti-Ni-Cu shape memory alloys. Metall. Mater. Trans. A 31, 2423 (2000).
29.Gil, F.J., Solano, E., Penal, J., Engel, E., Mendoza, A., and Planell, J.A.: Microstructural, mechanical and cytotoxicity evaluation of different NiTi and NiTiCu shape memory alloys. J. Mater. Sci.- Mater. Med. 15, 1181 (2004).
30.Colombo, S., Cannizzo, C., Gariboldi, F., and Airoldi, G.: Electrical resistance and deformation during the stress-assisted two-way memory effect in Ni45Ti50Cu5 alloy. J. Alloy. Comp. 422, 313 (2006).
31.Grossmann, Ch., Frenzel, J., Samphath, V., Depka, T., and Eggeler, G.: Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall. Mater. Trans. A 40, 2530 (2009).
32.Sen, I. and Ramamurty, U.: High-temperature (1023 K to 1273 K [750 °C to 1000 °C]) plastic deformation behavior of B-modified Ti-6Al-4V alloys: Temperature and strain rate effects. Metall. Mater. Trans. A 41, 2959 (2010).
33.Goetz, R.L. and Semiatin, S.L.: The adiabatic correction factor for the deformation heating during the uniaxial compression test. J. Mater. Eng. Perform. 10, 710 (2001).
34.Prasad, Y.V.R.K. and Sasidhara, S.: Hot Working Guide (ASM International, Materials Park, OH, 1997).
35.Charpentier, P.L., Store, B.C., Earnest, S.C., and Thomas, J.F. Jr.: Characterization and modeling of the high temperature flow behavior of aluminum alloy 2024. Metall. Trans. A 17, 2227 (1986).
36.Oh, S.I., Semiatin, S.L., and Jonas, J.J.: An analysis of the isothermal hot compression test. Metall. Trans. A 23, 963 (1992).
37.Mukherjee, A.K.: High temperature creep mechanism of TiNi. J. Appl. Phys. 39, 2201 (1968).
38.Kato, H., Yamamoto, T., Hashimoto, S., and Miura, S.: High-temperature plasticity of the β-phase in nearly-equiatomic nickel-titanium alloys. Mater. Trans. JIM 40, 343 (1999).
39.Prasad, Y.V.R.K.: Recent advances in the science of mechanical processing. Indian J. Technol. 28, 435 (1990).
40.Sen, I., Kottada, R.S., and Ramamurty, U.: High temperature deformation processing maps for boron modified Ti–6Al–4V alloys. Mater. Sci. Eng., A 527, 6157 (2010).
41.Lehockey, E.M., Lin, Y-P., and Lepik, O.E.: Mapping residual plastic strain in materials using electron backscatter diffraction, in Electron Backscatter Diffraction in Materials Science, edited by Schwartz, A.J., Kumar, M., and Adams, B.L. (Kluwer Academic/Plenum Publishers, New York, 2000), pp 247264.
42.Randle, V. and Engler, O.: Introduction to Texture Analysis—Macrotexture, Microtexture and Orientation Mapping (CRC Press, Boca Raton, FL, 2000), pp 245261.


High-temperature deformation processing maps for a NiTiCu shape memory alloy

  • Vyasa V. Shastry (a1), Bikas Maji (a2), Madangopal Krishnan (a2) and Upadrasta Ramamurty (a3)


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed