Hostname: page-component-848d4c4894-8kt4b Total loading time: 0 Render date: 2024-07-01T15:52:56.176Z Has data issue: false hasContentIssue false

High-strength bulk Al-based bimodal ultrafine eutectic composite with enhanced plasticity

Published online by Cambridge University Press:  31 January 2011

Jin Man Park
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and Center for Non-Crystalline Materials, Yonsei University, Seoul 120-749, Republic of Korea
Uta Kühn
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials, D-01171 Dresden, Germany
Jürgen Eckert*
Affiliation:
Leibniz Institute for Solid State and Materials Research Dresden, Institute for Complex Materials, D-01171 Dresden, Germany; and TU Dresden, Institute of Materials Science, D-01062 Dresden, Germany
Ki Buem Kim
Affiliation:
Department of Advanced Materials Engineering, Sejong University, Seoul 143-747, Republic of Korea
Won Tae Kim
Affiliation:
Division of Applied Science, Cheongju University, Cheongju 360-764, Republic of Korea
Kamanio Chattopadhyay
Affiliation:
Department of Metallurgy, Indian Institute of Science, Bangalore 560-012, India
Do Hyang Kim*
Affiliation:
Center for Non-Crystalline Materials, Department of Metallurgical Engineering, Yonsei University, Seoul 120-749, Republic of Korea
*
a) This author was an editor of this journal during the review and decision stage. For the JMR policy on review and publication of manuscripts authored by editors, please refer to http://www.mrs.org/jmr_policy
b) Address all correspondence to this author. e-mail:dohkim@yonsei.ac.kr
Get access

Abstract

An in situ bulk ultrafine bimodal eutectic Al–Cu–Si composite was synthesized by solidification. This heterostructured composite with microstructural length scale hierarchy in the eutectic microstructure, which combines an ultrafine-scale binary cellular eutectic (α-Al + Al2Cu) and a nanometer-sized anomalous ternary eutectic (α-Al + Al2Cu + Si), exhibits high fracture strength (1.1 ± 0.1 GPa) and large compressive plastic strain (11 ± 2%) at room temperature. The improved compressive plasticity of the bimodal-nanoeutectic composite originates from homogeneous and uniform distribution of inhomogeneous plastic deformation (localized shear bands), together with strong interaction between shear bands in the spatially heterogeneous structure.

Type
Articles
Copyright
Copyright © Materials Research Society 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1He, G., Eckert, J., Löser, W., and Schultz, L.: Novel Ti-base nanostructure-dendrite composite with enhanced plasticity. Nat. Mater. 2, 33 (2003).Google Scholar
2Park, J.M., Sohn, S.W., Kim, T.E., Kim, K.B., Kim, W.T., and Kim, D.H.: Nanostructure-dendrite composites in the Fe-Zr binary alloy system exhibiting high strength and plasticity. Scr. Mater. 57, 1153 (2007).CrossRefGoogle Scholar
3Louzguine, D.V., Kato, H., and Inoue, A.: High-strength hypereu-tectic Ti-Fe-Co bulk alloy with good ductility. Philos. Mag. Lett. 84, 359 (2004).CrossRefGoogle Scholar
4Ma, E.: Controlling plastic instability. Nat. Mater. 2, 7 (2003).CrossRefGoogle ScholarPubMed
5Park, J.M., Kim, T.E., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., and Eckert, J.: High strength Ni-Zr binary ultrafine eutectic-dendrite composite with large plastic deformability. Appl. Phys. Lett. 93, 031903 (2008).Google Scholar
6Ma, H., Shi, L.L., Xu, J., and Ma, E.: Chill-cast in situ composites in the pseudo- ternary Mg-(Cu,Ni)-Y glass-forming system: Microstructure and compressive properties. J. Mater. Res. 22, 314 (2007).Google Scholar
7Han, J.H., Kim, K.B., Yi, S., Park, J.M., Sohn, S.W., Kim, T.E., Kim, D.H., Das, J., and Eckert, J.: Formation of a bimodal eutectic structure in Ti–Fe–Sn alloys with enhanced plasticity. Appl. Phys. Lett. 93, 141901 (2008).Google Scholar
8Louzguine, D.V., Louzguina, L.V., Kato, H., and Inoue, A.: Investigation of Ti-Fe-Co bulk alloys with high strength and enhanced ductility. Acta Mater. 53, 2009 (2005).Google Scholar
9Park, J.M., Sohn, S.W., Kim, D.H., Kim, K.B., Kim, W.T., and Eckert, J.: Propagation of shear bands and accommodation of shear strain in the Fe56Nb4Al40 ultrafine eutectic-dendrite com-posite. Appl. Phys. Lett. 92, 091910 (2008).CrossRefGoogle Scholar
10Das, J., Kim, K.B., Baier, F., Löser, W., and Eckert, J.: High-strength Ti-base ultrafine eutectic with enhanced ductility. Appl. Phys. Lett. 87, 161907 (2005).Google Scholar
11Park, J.M., Kim, D.H., Kim, K.B., and Kim, W.T.: Deformation-induced rotational eutectic colonies containing length-scale het-erogeneity in an ultrafine eutectic Fe83Ti7Zr6B4 alloy. Appl. Phys. Lett. 91, 131907 (2007).Google Scholar
12Louzguine, D.V., Kato, H., Louzguina, L.V., and Inoue, A.: High-strength binary Ti-Fe bulk alloys with enhanced ductility. J. Mater. Res. 19, 3600 (2004).Google Scholar
13Shi, L., Ma, H., Liu, T., Xu, J., and Ma, E.: Microstructure and compressive properties of chill-cast Mg-Al-Ca alloys. J. Mater. Res. 21, 613 (2006).Google Scholar
14Park, J.M., Kim, K.B., Lee, M.H., Kim, W.T., Eckert, J., and Kim, D.H.: High strength ultrafine eutectic Fe-Nb-Al composites with enhanced plasticity. Intermetallics 16, 642 (2008).CrossRefGoogle Scholar
15Louzguine, D.V., Louzguina, L.V., Kato, H., and Inoue, A.: Investigation of high strength metastable hypereutectic ternary Ti–Fe–Co and quaternary Ti–Fe–Co–(V, Sn) alloys. J. Alloys Compd. 434–435, 32 (2007).Google Scholar
16Park, J.M., Kim, D.H., Kim, K.B., Lee, M.H., Kim, W.T., and Eckert, J.: Influence of heterogeneities with different length scale on the plasticity of Fe-base ultrafine eutectic alloys. J. Mater. Res. 23, 2003 (2008).Google Scholar
17Mondolfo, L.F.: Alluminum Alloys: Structure and Properties (Butterworths, London, UK 1976).Google Scholar
18Li, Y., Georgarakis, K., Pang, S., Antonowicz, J., Charlot, F., Lemoulec, A., Zhang, T., and Yavari, A.R.: AlNiY chill-zone alloys with good mechanical properties. J Alloys Compd. 447, 346 (2009).CrossRefGoogle Scholar
19Sun, B.A., Pan, M.X., Zhao, D.Q., Wang, W.H., Xi, X.K., Sandor, M.T., and Wu, Y.: Aluminum-rich bulk metallic glasses. Scr. Mater. 59, 1159 (2008).Google Scholar
20Sasaki, T.T., Mukai, T., and Hono, K.: A high-strength bulk nanocrystalline Al-Fe alloy processed by mechanical alloying and spark plasma sintering. Scr. Mater. 57, 189 (2007).Google Scholar
21Villars, P., Prince, A., and Okamoto, H.: Handbook of Ternary Alloy Phase Diagrams (ASM International, Materials Park, OH, 1995).Google Scholar
22JCPDFWIN: Version 2.2 (JCPDS, International Center for Diffraction Data, Newton Square, PA, 2001).Google Scholar
23Elliott, R.: Eutectic Solidification Processing: Crystalline and Glassy Alloys (Butterworths, London, UK, 1983).Google Scholar
24Jackson, K.A. and Hunt, J.D.: Lamellar and rod eutectic growth. Trans. Metall. Soc. AIME 236, 1129 (1966).Google Scholar
25Ferrandini, P.L., Araujo, F.L.G.U., Batista, W.W., and Caram, R.: Growth and characterization of the NiAl-NiAlNb eutectic structure. J. Cryst. Growth 275, e147 (2005).Google Scholar
26Han, J.H., Kim, K.B., Yi, S., Park, J.M., Kim, D.H., Pauly, S., and Eckert, J.: Influence of a bimodal eutectic structure on the plastic-ity of (Ti70.5Fe29.5)91Sn9 ultrafine composite. Appl. Phys. Lett. 93, 201906 (2008).Google Scholar