Hostname: page-component-848d4c4894-mwx4w Total loading time: 0 Render date: 2024-07-02T02:37:42.258Z Has data issue: false hasContentIssue false

High-resolution x-ray diffraction study of In0.25Ga0.75Sb/InAs superlattice

Published online by Cambridge University Press:  31 January 2011

A. Vigliante
Affiliation:
Department of Physics, University of Houston, Houston, Texas 77204-5506
H. Homma
Affiliation:
Department of Physics, University of Houston, Houston, Texas 77204-5506
J. T. Zborowski
Affiliation:
Department of Physics, University of Houston, Houston, Texas 77204-5506
T. D. Golding
Affiliation:
Department of Physics, University of Houston, Houston, Texas 77204-5506
S. C. Moss
Affiliation:
Department of Physics, University of Houston, Houston, Texas 77204-5506
Get access

Abstract

An In0.25Ga0.75Sb/InAs strained-layer superlattice, grown by molecular-beam epitaxy (MBE) on a GaSb[001] substrate, has been characterized by four-circle x-ray diffractometry. This system, proposed by Maliot and Smith for ir detection application, is challenging because of the two group V species and the likelihood of cross-incorporation of the different elements during growth, leading possibly to interdiffusion and thus, to a more diffuse interface. High-resolution x-ray diffraction (XRD) profiles were obtained about several reciprocal lattice points in order to extract a reliable set of structural parameters. The profiles were then successfully modeled by computer simulation. The presence of many sharp higher-order satellite reflections in the XRD profiles is a measure of the high quality of the superlattices. The normal and lateral structural coherence was also measured and will be discussed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Osbourn, G. C., J. Appl. Phys. 53, 1586 (1982).CrossRefGoogle Scholar
2.Osbourn, G. C., IEEE J. Quant. Electron QE-22, 1677 (1986).CrossRefGoogle Scholar
3.Mailhiot, C. and Smith, D. L., J. Vacuum Sci. Technol. B 5, 1814 (1987).CrossRefGoogle Scholar
4.Mailhiot, C. and Smith, D. L., J. Vacuum Sci. Technol. A 7, 445 (1989).CrossRefGoogle Scholar
5.Zborowski, J., Fan, W. C., Golding, T.D., Vigliante, A., Chow, P. C., Shih, H.D., and Anthony, J.M., J. Appl. Phys. 71, 5908 (1992).CrossRefGoogle Scholar
6.Bartels, W.J., Hornstra, J., and Lobeek, D.J. W., Acta Crystallogr. A 42, 539 (1986).CrossRefGoogle Scholar
7.Vandenberg, J.M., Chu, S.N.G, Hamm, R.A., Panish, M.B., and Tempkin, H., Appl. Phys. Lett. 49, 1302 (1986).CrossRefGoogle Scholar
8.Sevenhans, W., Giji, M., Bruynseraede, Y., Homma, H., and Schuller, I. K., Phys. Rev. B 34, 5955 (1986).CrossRefGoogle Scholar
9.Clemens, B. M. and Gay, J. G., Phys. Rev. B 35, 9337 (1987).CrossRefGoogle Scholar
10.Fullerton, E. E., Schuller, I. K., Vanderstaeten, H., and Bruynseraede, Y., Phys. Rev. B 45, 9292 (1992).CrossRefGoogle Scholar
11.Meyer, R., Hollfelder, M., Hardtdegen, H., Lengeler, B., and Lüth, H., J. Cryst. Growth 124, 583 (1992).CrossRefGoogle Scholar
12.Segmüller, A. and Blakeslee, A.E., J. Appl. Crystallogr. 6, 19 (1973).CrossRefGoogle Scholar
13.McWhan, D. B., Gurvitch, M., Rowell, J. M., and Walker, L. R., J. Appl. Phys. 54, 3886 (1983).CrossRefGoogle Scholar
14.Golding, T.D., Shih, H. D., Zborowski, J., Fan, W. C., Chow, P. C., Vigliante, A., Covington, B.C., Chi, A., Anthony, J. M., and Schacke, H. F., J. Vac. Sci. Technol. B10, 880 (1992).CrossRefGoogle Scholar
15.Zborowski, J., Vigliante, A., Moss, S. C., and Golding, T. D., J. Appl. Phys. 79, 11 (1996).CrossRefGoogle Scholar
16.Chrzan, D. and Dutta, P., J. Appl. Phys. 59, 1504 (1986).CrossRefGoogle Scholar
17.Hendricks, S. and Teller, E., J. Chem. Phys. 10, 149 (1942).CrossRefGoogle Scholar
18.Warren, B. E., X-ray Diffraction (Dover Publishing Company, New York, 1990).Google Scholar
19.Vandenberg, J.M., Gershoni, D., Hamm, R.A., Panish, M.B., and Temkin, H., J. Appl. Phys. 66, 3635 (1989).CrossRefGoogle Scholar
20.Feenstra, R. M., Collins, D.A., Ting, D. Z.Y, Wang, M.W., and McGill, T.C., Phys. Rev. Lett. 72, 2749 (1994).CrossRefGoogle Scholar
21.Neuberger, M., Handbook of Electronic Materials (IFI/Plenum, 1971), Vol. 2.CrossRefGoogle Scholar