Hostname: page-component-77c89778f8-m8s7h Total loading time: 0 Render date: 2024-07-20T20:39:45.671Z Has data issue: false hasContentIssue false

A high-resolution electron microscopy study of blue-light emitting β–SiC nanoparticles in C+-implanted silicon

Published online by Cambridge University Press:  31 January 2011

Y. H. Gao
Affiliation:
Beijing Laboratory of Electron Microscopy, Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, People's Republic of China
Z. Zhang
Affiliation:
Beijing Laboratory of Electron Microscopy, Center for Condensed Matter Physics, Chinese Academy of Sciences, P.O. Box 2724, Beijing 100080, People's Republic of China
L. S. Liao
Affiliation:
Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
X. M. Bao
Affiliation:
Department of Physics and National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, People's Republic of China
Get access

Abstract

A high-resolution electron microscopy study of β–SiC nanoparticles formed by C+-implantation of single crystal silicon with subsequent annealing has been carried out. The as-implanted sample had a trilayered structure, in which the surface layer, A, and the bottom layer, C, were crystalline but damaged, and the middle layer, B, was amorphous. After annealing this structure, β–SiC particles were formed throughout the trilayered structure but with different forms: a few epitaxial β–SiC nanoparticles in layers A and C, and more random nanoparticles in layer B. The β–SiC nanoparticles, in the size range 2–8 nm, should be responsible for the blue-emitting effect of the silicon-based porous β–SiC.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Canham, L. T., Appl. Phys. Lett. 57, 1046 (1990).CrossRefGoogle Scholar
2.Wang, X., Shi, G., Zhang, F. L., Chen, H. J., Wang, W., Hao, P. H., and Hou, X. Y., Appl. Phys. Lett. 63, 2363 (1993).CrossRefGoogle Scholar
3.Lee, M. K. and Peng, K. R., Appl. Phys. Lett. 62, 3159 (1993).CrossRefGoogle Scholar
4.Rüter, D., Kunze, T., and Bauhofer, W., Appl. Phys. Lett. 64, 3006 (1994).CrossRefGoogle Scholar
5.Choyke, W. J. and Patrick, I., Phys. Rev. B 2, 4959 (1970).CrossRefGoogle Scholar
6.Ikeda, M., Hayakawa, T., Yamagiwa, S., Matsunami, H., and Tanaka, T., J. Appl. Phys. 50, 8215 (1979).CrossRefGoogle Scholar
7.Matsumoto, T., Takahashi, J., Tamaki, T., Futagi, T., and Mimura, H., Appl. Phys. Lett. 64, 226 (1994).CrossRefGoogle Scholar
8.Liao, L. S., Bao, X. M., Li, N. S., Yang, Z. F., and Min, N. B., Solid State Commun. 95, 559 (1995).CrossRefGoogle Scholar
9.Liao, L. S., Bao, X. M., Yang, Z. F., and Min, N. B., Appl. Phys. Lett. 66, 2382 (1995).CrossRefGoogle Scholar
10.Hirsh, P., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals (Robert E. Krieger, Huntington, NY, 1977).Google Scholar
11.Jia, C. L., Urban, K., and Jiang, X., Phys. Rev. B 52, 5164 (1995).CrossRefGoogle Scholar
12.Takagahara, T. and Takeda, K., Phys. Rev. B 46, 15 578 (1992).CrossRefGoogle Scholar
13.Proot, J. P., Celerue, C., and Allan, G., Appl. Phys. Lett. 61, 1948 (1992).CrossRefGoogle Scholar
14.Delley, B. and Steigmeier, E. F., Phys. Rev. B 47, 1397 (1993).CrossRefGoogle Scholar
15.Buda, F., Kohanoff, J., and Parrinello, M., Phys. Rev. Lett. 69, 1272 (1992).CrossRefGoogle Scholar