Hostname: page-component-76fb5796d-dfsvx Total loading time: 0 Render date: 2024-04-25T12:00:38.289Z Has data issue: false hasContentIssue false

High-resolution electron microscopy of epitaxial YBCO/Y2O3/YSZ on Si(001)

Published online by Cambridge University Press:  03 March 2011

A. Bardal
Affiliation:
Siemens Research Laboratories, Otto Hahn Ring 6, 8000 Munich 83, Germany and SINTEF Applied Physics, 7034 Trondheim, Norway
O. Eibl
Affiliation:
Siemens Research Laboratories, Otto Hahn Ring 6, 8000 Munich 83, Germany
Th. Matthée
Affiliation:
Siemens Research Laboratories, 8520 Erlangen, Germany
G. Friedl
Affiliation:
Siemens Research Laboratories, 8520 Erlangen, Germany
J. Wecker
Affiliation:
Siemens Research Laboratories, 8520 Erlangen, Germany
Get access

Extract

The microstructures of YBa2Cu3O7−δ (YBCO) thin films grown on Si with Y-stabilized ZrO2 (YSZ) and Y2O3 buffer layers were characterized by means of high-resolution electron microscopy. At the Si–YSZ interface, a 2.5 nm thick layer of regrown amorphous SiOx is present. The layer is interrupted by crystalline regions, typically 5 to 10 nm wide and 10 to 50 nm apart. Close to the crystalline regions, {111} defects are present in the Si substrate. The typical defect observed is an extrinsic stacking fault plus a perfect dislocation close to the stacking fault which terminates extra {111} planes in the upper part of the Si. These defects are probably formed by condensation of Si self-interstitials created during oxide regrowth. Precipitates are present in the Si close to the Si–YSZ interface and indicate that in-diffusion of Zr has occurred. The YSZ–Y2O3 interface is atomically sharp and essentially planar and contains no second phases. Perfect misfit dislocations with Burgers vector 1/2〈110〉 are present at this interface along with unrelaxed elastic misfit stresses. The Y2O3–YBCO interface is atomically sharp and planar, but contains steps. (001) stacking faults are present in the YBCO above these steps; the faults are, however, healed a few unit cells away from the interface. By HREM analysis of ultrathin specimen areas, the atomic layer of the YBCO closest to the Y2O3 was found to be a barium-oxygen layer.

Type
Rapid Communications
Copyright
Copyright © Materials Research Society 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1Superconductivity Electronics, edited by Hara, K. (Prentice Hall, Englewood Cliffs, NJ, 1987).Google Scholar
2Kroger, H., Hilbert, C., Gibson, D. A., Ghoshal, U., and Smith, L. N., Proc. IEEE 77, 1287 (1989).CrossRefGoogle Scholar
3Prusseit, W., Corsepius, S., Baudenbacher, F., Hirata, K., Berberich, P., and Kinder, H., Appl. Phys. Lett. 61, 1841 (1992).CrossRefGoogle Scholar
4Fork, D.K., Fenner, D. B., Barton, R.W., Phillips, J. M., Connell, G. A. N., Boyce, J. B., and Geballe, T. H., Appl. Phys. Lett. 57, 1161 (1990).CrossRefGoogle Scholar
5Cima, M. J., Schneider, J. S., Peterson, S. C., and Koblenz, W., Appl. Phys. Lett. 53, 710 (1988).CrossRefGoogle Scholar
6Eibl, O., Hradil, K., and Schmidt, H., Physica C 177, 89 (1991).CrossRefGoogle Scholar
7Hwang, D. M., Ying, Q. Y., and Kwok, H. S., Appl. Phys. Lett. 58, 2429 (1991).CrossRefGoogle Scholar
8Fenner, D.B., Viano, A. M., Fork, D.K., Connell, G. A. N., Boyce, J. B., Ponce, F. A., and Tramontana, J. C., J. Appl. Phys. 69, 2176 (1991).CrossRefGoogle Scholar
9Myoren, H., Nishiyama, Y., Miyamoto, N., Kai, Y., Yamanaka, Y., Osaka, Y., and Nishiyama, F., Jpn. J. Appl. Phys. 29, L955 (1990).CrossRefGoogle Scholar
10Matthee, Th., Wecker, J., Behner, H., Friedl, G., Eibl, O., and Samwer, K., Appl. Phys. Lett. 61, 1240 (1992).CrossRefGoogle Scholar
11Bardal, A., Zwerger, M., Eibl, O., Wecker, J., and Matthee, Th., Appl. Phys. Lett. 61, 1243 (1992).CrossRefGoogle Scholar
12Behner, H., Wecker, J., and Heines, B., in High Tc Superconductor Thin Films, edited by Correra, L. (Elsevier, Amsterdam, 1992), p. 623.CrossRefGoogle Scholar
13Wecker, J., Matthee, Th., Behner, H., Friedl, G., and Samwer, K., in Layered Superconductors: Fabrication, Properties and Applications, edited by Shaw, D. T., Tsuei, C. C., Schneider, T. R., and Shiohara, Y. (Mater. Res. Soc. Symp. Proc. 275, Pittsburgh, PA, 1992), p. 107.Google Scholar
14Fork, D. K., Ponce, F. A., Tramontana, J. C., Newman, N., Phillips, J. M., and Geballe, T. H., Appl. Phys. Lett. 58, 2432 (1991).CrossRefGoogle Scholar
15Bardal, A., Matthee, Th., and Wecker, J., unpublished research.Google Scholar
16Jesser, W. A. and Merwe, J. H. van der, J. Appl. Phys. 63, 1928 (1988).CrossRefGoogle Scholar
17Merwe, J.H. van der and Jesser, W.A., J. Appl. Phys. 64, 4968 (1988).CrossRefGoogle Scholar
18Glaisher, R. W., Spargo, A. E. C., and Smith, D. J., Ultramicroscopy 27, 35 (1989).CrossRefGoogle Scholar
19Hirth, J. P. and Lothe, J., Theory of Dislocations (McGraw-Hill, New York, 1968).Google Scholar
20Hu, S. M., J. Appl. Phys. 45, 1567 (1974).CrossRefGoogle Scholar
21Tan, T.Y. and Gosele, U., Appl. Phys. Lett. 39, 86 (1981).CrossRefGoogle Scholar
22Nisse, E. P. Eer, Appl. Phys. Lett. 30, 290 (1977).Google Scholar
23Nisse, E.P. Eer, Appl. Phys. Lett. 35, 8 (1979).Google Scholar
24Gosele, U. and Tan, T. Y., in Aggregation Phenomena of Point Defects in Silicon, edited by Sirtl, E., Goorissen, J., and Wagner, P. (The Electrochemical Society, NJ, 1983), p. 17.Google Scholar
25Ponce, F.A., Yamashita, T., and Hahn, S., Appl. Phys. Lett. 43, 1051 (1983).CrossRefGoogle Scholar
26Nicolet, M. A. and Lau, S. S., in VLSI Electronics: Microstructure Science, edited by Einspruch, N. G. and Larrabee, G. B. (Academic Press, New York, 1983), Vol. 6, p. 329.Google Scholar
27Bardal, A., Matthee, Th., and Wecker, J., unpublished research.Google Scholar
28Prusseit, W., Corsepius, S., Zwerger, M., Berberich, P., Kinder, H., Eibl, O., Breuer, U., Jaekel, C., and Kurz, H., Physica C 201, 249 (1992).CrossRefGoogle Scholar
29Hirsch, P. B., Howie, A., Nicholson, R. B., Pashley, D. W., and Whelan, M. J., Electron Microscopy of Thin Crystals, 2nd ed. (Robert E. Krieger, Malabar, 1977).Google Scholar
30Hwang, D. M., Venkatesan, T., Chang, C. C., Nazar, L., Wu, X. D., Inam, A., and Hegde, M. S., Appl. Phys. Lett. 54, 1702 (1989).CrossRefGoogle Scholar
31Eibl, O., Hoenig, H. E., Triscone, J. M., Fischer, O., Antognazza, L., and Brunner, O., Physica C 172, 365 (1990).CrossRefGoogle Scholar
32Cava, R. J., Hewat, A. W., Hewat, E. A., Batlogg, B., Marezio, M., Rabe, K. M., Krajewski, J. J., Peck, W. F. Jr., and Rupp, L. W. Jr., Physica C 165, 419 (1990).CrossRefGoogle Scholar
33Gross, R., Chaudhari, P., Kawasaki, M., Ketchen, M. B., and Gupta, A., Appl. Phys. Lett. 57, 727 (1990).CrossRefGoogle Scholar
34Char, K., Colclough, M. S., Garrison, S. M., Newman, N., and Zaharchuk, G., Appl. Phys. Lett. 59, 733 (1991).CrossRefGoogle Scholar
35Simon, R.W., Bulman, J. B., Burch, J.F., Coons, S. B., Daly, K.P., Dozier, W. D., Hu, R., Lee, A. E., Luine, J. A., Platt, C. E., Schwarzbek, S. M., Wire, M. S., and Zani, M. J., IEEE Trans. Magn. 27, 3209 (1991).CrossRefGoogle Scholar
36Jia, C. L., Kabius, B., Urban, K., Herrmann, K., Schubert, J., Zander, W., and Braginski, A. I., Physica C 196, 211 (1992).CrossRefGoogle Scholar
37Blamire, M.G., Morris, G. W., Somekh, R.E., and Evetts, J. E., J. Phys. D 20, 1330 (1987).CrossRefGoogle Scholar
38Hirata, K., Yamamoto, K., Iijima, K., Takada, J., Terashima, T., Bando, Y., and Mazaki, H., Appl. Phys. Lett. 56, 683 (1990).CrossRefGoogle Scholar
39Iguchi, I., Kusumori, T., and Wen, Z., in High Tc Superconductor Thin Films, edited by Correra, L. (Elsevier, Amsterdam, 1992), p. 845.CrossRefGoogle Scholar
40Catana, A., Locquet, J-P., and Broom, R., in High Tc Superconductor Thin Films, edited by Correra, L. (Elsevier, Amsterdam, 1992), p. 747.CrossRefGoogle Scholar
41Streiffer, S.K., Lairson, B. M., Eom, C.B., Marshall, A. F., Bravman, J. C., and Geballe, T. H., in High Resolution Electron Microscopy of Defects in Materials, edited by Sinclair, R., Smith, D. J., and Dahmen, U. (Mater. Res. Soc. Symp. Proc. 183, Pittsburgh, PA, 1990), p. 363.Google Scholar