Skip to main content Accessibility help
×
Home

High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system

  • Yongchao Liu (a1), Mugilan Narayanasamy (a1), Cheng Yang (a2), Minjie Shi (a1), Wei Xie (a3), Hanzhao Wu (a1), Chao Yan (a1), Hua Hou (a4) and Zhanhu Guo (a5)...

Abstract

Wire-shaped supercapacitors (WSSCs) hold great promise in portable and wearable electronics. Herein, a novel kind of high-performance coaxial WSSCs has been demonstrated and realized by scrolling porous carbon dodecahedrons/Al foil film electrode on vertical FeOOH nanosheets wrapping carbon fiber tows (FeOOH NSs/CFTs) yarn electrode. Remarkably, ionogel is utilized as solid-state electrolyte and exhibits a high thermal/electrochemical stability, which effectively ensures the great reliability and high operating voltage of coaxial WSSCs. Benefiting from the intriguing configuration, the coaxial WSSCs with superior flexibility act as efficient energy storage devices and exhibit low resistance, high volumetric energy density (3.2 mW h/cm3), and strong durability (82% after 10,000 cycles). Importantly, the coaxial WSSCs can be effectively recharged by harvesting sustainable wind source and repeatedly supply power to the lamp without a decline of electrochemical performance. Considering the facile fabrication technology with an outstanding performance, this work has paved the way for the integration of sustainable energy harvesting and wearable energy storage units.

  • View HTML
    • Send article to Kindle

      To send this article to your Kindle, first ensure no-reply@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about sending to your Kindle. Find out more about sending to your Kindle.

      Note you can select to send to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be sent to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

      Find out more about the Kindle Personal Document Service.

      High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system
      Available formats
      ×

      Send article to Dropbox

      To send this article to your Dropbox account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Dropbox.

      High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system
      Available formats
      ×

      Send article to Google Drive

      To send this article to your Google Drive account, please select one or more formats and confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your <service> account. Find out more about sending content to Google Drive.

      High-performance coaxial wire-shaped supercapacitors using ionogel electrolyte toward sustainable energy system
      Available formats
      ×

Copyright

Corresponding author

a)Address all correspondence to these authors. e-mail: shiminjie@just.edu.cn
c)e-mail: zguo10@utk.edu

References

Hide All
1.Liu, H., Li, Q., Zhang, S., Yin, R., Liu, X., He, Y., Dai, K., Shan, C., Guo, J., Liu, C., Shen, C., Wang, X., Wang, N., Wang, Z., Wei, R., and Guo, Z.: Electrically conductive polymer composites for smart flexible strain sensors: A critical review. J. Mater. Chem. C 6, 1212112141 (2018).
2.Zhang, S., Liu, H., Yang, S., Shi, X., Zhang, D., Shan, C., Mi, L., Liu, C., Shen, C., and Guo, Z.: Ultrasensitive and highly compressible piezoresistive sensor based on polyurethane sponge coated with a cracked cellulose nanofibril/silver nanowire layer. ACS Appl. Mater. Interfaces 11, 1092210932 (2019).
3.Li, Q., Liu, H., Zhang, S., Zhang, D., Liu, X., He, Y., Mi, L., Zhang, J., Liu, C., Shen, C., and Guo, Z.: Superhydrophobic electrically conductive paper for ultrasensitive strain sensor with excellent anticorrosion and self-cleaning property. ACS Appl. Mater. Interfaces 11, 2190421914 (2019).
4.Shen, C., Liu, X., Cao, H., Zhou, Y., Liu, J., Tang, J., Guo, X., Huang, H., and Chen, X.: Brain-like navigation scheme based on MEMS-INS and place recognition. Appl. Sci. 9, 1708 (2019).
5.Jiang, Y.W.D., Li, B., Sun, C., Wu, Z., Yan, H., Xing, L., Qi, S., Li, Y., Liu, H., Wei, W., Wang, X., Ding, T., and Guo, Z.: Flexible sandwich structural strain sensor based on silver nanowires decorated self-healing substrate. Macromol. Mater. Eng. 304, 1900074 (2019).
6.Gu, H., Zhang, H., Ma, C., Sun, H., Liu, C., Dai, K., Zhang, J., Wei, R., Ding, T., and Guo, Z.: Smart strain sensing organic–inorganic hybrid hydrogels with nano barium ferrite as the cross-linker. J. Mater. Chem. C 7, 23532360 (2019).
7.Liu, H., Li, Y., Dai, K., Zheng, G., Liu, C., Shen, C., Yan, X., Guo, J., and Guo, Z.: Electrically conductive thermoplastic elastomer nanocomposites at ultralow graphene loading levels for strain sensor applications. J. Mater. Chem. C 4, 157166 (2016).
8.Lu, Y., Biswas, M.C., Guo, Z.H., Jeon, J.W., and Wujcik, E.K.: Recent developments in bio-monitoring via advanced polymer nanocomposite-based wearable strain sensors. Biosens. Bioelectron. 123, 167177 (2019).
9.Wei, H., Wang, H., Xia, Y., Cui, D., Shi, Y., Dong, M., Liu, C., Ding, T., Zhang, J., Ma, Y., Wang, N., Wang, Z., Sun, Y., Wei, R., and Guo, Z.: An overview of lead-free piezoelectric materials and devices. J. Mater. Chem. C 6, 1244612467 (2018).
10.Liu, W., Song, M.S., Kong, B., and Cui, Y.: Flexible and stretchable energy storage: Recent advances and future perspectives. Adv. Mater. 29, 1603436 (2017).
11.Yang, C., Ji, X., Fan, X., Gao, T., Suo, L., Wang, F., Sun, W., Chen, J., Chen, L., Han, F., Miao, L., Xu, K., Gerasopoulos, K., and Wang, C.: Flexible aqueous Li-ion battery with high energy and power densities. Adv. Mater. 29, 1701972 (2017).
12.Zhang, J., Zhang, Z., Jiao, Y., Yang, H., Li, Y., Zhang, J., and Gao, P.: The graphene/lanthanum oxide nanocomposites as electrode materials of supercapacitors. J. Power Sources 419, 99105 (2019).
13.Sun, K., Fan, R.H., Zhang, X.H., Zhang, Z.D., Shi, Z.C., Wang, N., Xie, P.T., Wang, Z.Y., Fan, G.H., Liu, H., Liu, C.T., Li, T.X., Yan, C., and Guo, Z.H.: An overview of metamaterials and their achievements in wireless power transfer. J. Mater. Chem. C 6, 29252943 (2018).
14.Jiao, Y., Zhang, J., Liu, S., Liang, Y., Li, S., Zhou, H., and Zhang, J.: The graphene oxide ionic solvent-free nanofluids and their battery performances. Sci. Adv. Mater. 10, 17061713 (2018).
15.Liu, Y.C., Shi, M.J., Yan, C., Zhuo, Q.Q., Wu, H.Z., Wang, L., Liu, H., and Guo, Z.H.: Inspired cheese-like biomass-derived carbon with plentiful heteroatoms for high performance energy storage. J. Mater. Sci. 30, 65836592 (2019).
16.Le, K., Wang, Z., Wang, F., Wang, Q., Shao, Q., Murugadoss, V., Wu, S., Liu, W., Liu, J., Gao, Q., and Guo, Z.: Sandwich-like NiCo layered double hydroxide/reduced graphene oxide nanocomposite cathodes for high energy density asymmetric supercapacitors. Dalton Trans. 48, 51935202 (2019).
17.Ma, Y., Hou, C., Zhang, H., Zhang, Q., Liu, H., Wu, S., and Guo, Z.: Three-dimensional core–shell Fe3O4/polyaniline coaxial heterogeneous nanonets: Preparation and high performance supercapacitor electrodes. Electrochim. Acta 315, 114123 (2019).
18.Du, W., Wang, X., Zhan, J., Sun, X., Kang, L., Jiang, F., Zhang, X., Shao, Q., Dong, M., Liu, H., Murugadoss, V., and Guo, Z.: Biological cell template synthesis of nitrogen-doped porous hollow carbon spheres/MnO2 composites for high-performance asymmetric supercapacitors. Electrochim. Acta 296, 907915 (2019).
19.Kirubasankar, B., Murugadoss, V., Lin, J., Ding, T., Dong, M., Liu, H., Zhang, J., Li, T., Wang, N., Guo, Z., and Angaiah, S.: In situ grown nickel selenide on graphene nanohybrid electrodes for high energy density asymmetric supercapacitors. Nanoscale 10, 2041420425 (2018).
20.Deng, W., Kang, T., Liu, H., Zhang, J., Wang, N., Lu, N., Ma, Y., Umar, A., and Guo, Z.: Potassium hydroxide activated and nitrogen doped graphene with enhanced supercapacitive behavior. Sci. Adv. Mater. 10, 937949 (2018).
21.Dong, X., Guo, Z., Song, Y., Hou, M., Wang, J., Wang, Y., and Xia, Y.: Flexible and wire-shaped micro-supercapacitor based on Ni(OH)2-nanowire and ordered mesoporous carbon electrodes. Adv. Funct. Mater. 24, 3405 (2014).
22.Yu, D., Qian, Q., Wei, L., Jiang, W., Goh, K., Wei, J., Zhang, J., and Chen, Y.: Emergence of fiber supercapacitors. Chem. Soc. Rev. 44, 647 (2015).
23.Kou, L., Huang, T., Zheng, B., Han, Y., Zhao, X., Gopalsamy, K., Sun, H., and Gao, C.: Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics. Nat. Commun. 5, 3754 (2014).
24.Le, V.T., Kim, H., Ghosh, A., Kim, J., Chang, J.M., Vu, Q.A., Pham, D.T., Lee, J-H., Kim, S-W., and Lee, Y.H.: Coaxial fiber supercapacitor using all-carbon material electrodes. ACS Nano 7, 59405947 (2013).
25.Xu, H., Hu, X., Sun, Y., Yang, H., Liu, X., and Huang, Y.: Flexible fiber-shaped supercapacitors based on hierarchically nanostructured composite electrodes. Nano Res. 8, 11481158 (2015).
26.Thangavel, R., Kannan, A.G., Ponraj, R., Thangavel, V., Kim, D-W., and Lee, Y-S.: High-energy green supercapacitor driven by ionic liquid electrolytes as an ultra-high stable next-generation energy storage device. J. Power Sources 383, 102109 (2018).
27.Chapman Varela, J., Sankar, K., Hino, A., Lin, X., Chang, W., Coker, D., and Grinstaff, M.: Piperidinium ionic liquids as electrolyte solvents for sustained high temperature supercapacitor operation. Chem. Commun. 54, 5590 (2018).
28.Shahzad, S., Shah, A., Kowsari, E., Iftikhar, F.J., Nawab, A., Piro, B., Akhter, M.S., Rana, U.A., and Zou, Y.: Ionic liquids as environmentally benign electrolytes for high-performance supercapacitors. Global Challeng 3, 1800023 (2019).
29.Zhang, J., Li, P., Zhang, Z., Wang, X., Tang, J., Liu, H., Shao, Q., Ding, T., Umar, A., and Guo, Z.: Solvent-free graphene liquids: Promising candidates for lubricants without the base oil. J. Colloid Interface Sci. 542, 159167 (2019).
30.Zhang, J., Liu, S., Yan, C., Wang, X., Wang, L., Yu, Y., and Li, S.: Abrasion properties of self-suspended hairy titanium dioxide nanomaterials. Appl. Nanosci. 7, 691700 (2017).
31.Zhang, X., Kar, M., Mendes, T.C., Wu, Y., and MacFarlane, D.R.: Supported ionic liquid gel membrane electrolytes for flexible supercapacitors. Adv. Energy Mater. 8, 1702702 (2018).
32.Feng, L., Wang, K., Zhang, X., Sun, X., Li, C., Ge, X., and Ma, Y.: Flexible solid-state supercapacitors with enhanced performance from hierarchically graphene nanocomposite electrodes and ionic liquid incorporated gel polymer electrolyte. Adv. Funct. Mater. 28, 1704463 (2018).
33.Xie, J-Q., Ji, Y-Q., Kang, J-H., Sheng, J-L., Mao, D-S., Fu, X-Z., Sun, R., and Wong, C-P.: In situ growth of Cu(OH)2@FeOOH nanotube arrays on catalytically deposited Cu current collector patterns for high-performance flexible in-plane micro-sized energy storage devices. Energy Environ. Sci. 12, 194205 (2019).
34.Li, J., Wang, Y., Xu, W., Wang, Y., Zhang, B., Luo, S., Zhou, X., Zhang, C., Gu, X., and Hu, C.: Porous Fe2O3 nanospheres anchored on activated carbon cloth for high-performance symmetric supercapacitors. Nano Energy 57, 379387 (2019).
35.Yang, L., Shi, M., Jiang, J., Liu, Y., Yan, C., Liu, H., and Guo, Z.: Heterogeneous interface induced formation of balsam pear-like PPy for high performance supercapacitors. Mater. Lett. 244, 2730 (2019).
36.Qu, Z., Shi, M., Wu, H., Liu, Y., Jiang, J., and Yan, C.: An efficient binder-free electrode with multiple carbonized channels wrapped by NiCo2O4 nanosheets for high-performance capacitive energy storage. J. Power Sources 410–411, 179187 (2019).
37.Xin, F., Jia, Y., Sun, J., Dang, L., Liu, Z., and Lei, Z.: Enhancing the capacitive performance of carbonized wood by growing FeOOH nanosheets and poly(3,4-ethylenedioxythiophene) coating. ACS Appl. Mater. Interfaces 10, 3219232200 (2018).
38.Liu, B., Wang, Y., Peng, H.Q., Yang, R., Jiang, Z., Zhou, X., Lee, C.S., Zhao, H., and Zhang, W.: Iron vacancies induced bifunctionality in ultrathin feroxyhyte nanosheets for overall water splitting. Adv. Mater. 30, 1803144 (2018).
39.Luo, H., Tao, K., and Gong, Y.: K-doped FeOOH/Fe3O4 nanoparticles grown on a stainless steel substrate with superior and increasing specific capacity. Dalton Trans. 48, 24912504 (2019).
40.Han, X., Yu, C., Yang, J., Song, X., Zhao, C., Li, S., Zhang, Y., Huang, H., Liu, Z., Huang, H., Tan, X., and Qiu, J.: Electrochemically driven coordination tuning of FeOOH integrated on carbon fiber paper for enhanced oxygen evolution. Small 15, 1901015 (2019).
41.Liu, J., Zheng, M., Shi, X., Zeng, H., and Xia, H.: Amorphous FeOOH quantum dots assembled mesoporous film anchored on graphene nanosheets with superior electrochemical performance for supercapacitors. Adv. Funct. Mater. 26, 919930 (2016).
42.Zheng, F., Yang, Y., and Chen, Q.: High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat. Commun. 5, 5261 (2014).
43.Li, Y.P., Yang, C.H., Zheng, F.H., Ou, X., Pan, Q.C., Liu, Y.Z., and Wang, G.: High pyridine N-doped porous carbon derived from metal-organic frameworks for boosting potassium-ion storage. J. Mater. Chem. A 6, 1795917966 (2018).
44.Chen, K., Sun, Z., Fang, R., Shi, Y., Cheng, H-M., and Li, F.: Metal-organic frameworks (MOFs)-derived nitrogen-doped porous carbon anchored on graphene with multifunctional effects for lithium-sulfur batteries. Adv. Funct. Mater. 28, 1707592 (2018).
45.Chen, L.F., Lu, Y., Yu, L., and Lou, X.W.: Designed formation of hollow particle-based nitrogen-doped carbon nanofibers for high-performance supercapacitors. Energy Environ. Sci. 10, 17771783 (2017).
46.Chen, L., Lin, R., and Yan, C.: Nitrogen-doped double-layer graphite supported CuCo2S4 electrode for high-performance asymmetric supercapacitors. Mater. Lett. 235, 610 (2019).
47.Sun, P., Lin, R., Wang, Z., Qiu, M., Chai, Z., Zhang, B., Meng, H., Tan, S., Zhao, C., and Mai, W.: Rational design of carbon shell endows TiN@C nanotube based fiber supercapacitors with significantly enhanced mechanical stability and electrochemical performance. Nano Energy 31, 432440 (2017).
48.Lu, S-Y., Jin, M., Zhang, Y., Niu, Y-B., Gao, J-C., and Li, C.M.: Chemically exfoliating biomass into a graphene-like porous active carbon with rational pore structure, good conductivity, and large surface area for high-performance supercapacitors. Adv. Energy Mater. 8, 1702545 (2017).
49.Wu, X., Han, Z., Zheng, X., Yao, S., Yang, X., and Zhai, T.: Core–shell structured Co3O4@NiCo2O4 electrodes grown on flexible carbon fibers with superior electrochemical properties. Nano Energy 31, 410417 (2017).
50.Zhang, Z., Xiao, F., and Wang, S.: Hierarchically structured MnO2/graphene/carbon fiber and porous graphene hydrogel wrapped copper wire for fiber-based flexible all-solid-state asymmetric supercapacitors. J. Mater. Chem. A 3, 1121511223 (2015).
51.Ren, J., Bai, W., Guan, G., Zhang, Y., and Peng, H.: Flexible and weaveable capacitor wire based on a carbon nanocomposite fiber. Adv. Mater. 25, 59655970 (2013).
52.Chen, X., Qiu, L., Ren, J., Guan, G., Lin, H., Zhang, Z., Chen, P., Wang, Y., and Peng, H.: Novel electric double-layer capacitor with a coaxial fiber structure. Adv. Mater. 25, 64366441 (2013).
53.Weng, W., Sun, Q., Zhang, Y., Lin, H., Ren, J., Lu, X., Wang, M., and Peng, H.: Winding aligned carbon nanotube composite yarns into coaxial fiber full batteries with high performances. Nano Lett. 14, 34323438 (2014).
54.Liu, W., Liu, N., Shi, Y., Chen, Y., Yang, C., Tao, J., Wang, S., Wang, Y., Su, J., Li, L., and Gao, Y.: A wire-shaped flexible asymmetric supercapacitor based on carbon fiber coated with a metal oxide and a polymer. J. Mater. Chem. A 3, 1346113467 (2015).
55.Fu, Y., Cai, X., Wu, H., Lv, Z., Hou, S., Peng, M., Yu, X., and Zou, D.: Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv. Mater. 24, 57135718 (2012).
56.Shi, M., Yang, C., Song, X., Zhao, L., Liu, J., Zhang, P., and Gao, L.: Integrated sustainable wind power harvesting and ultrahigh energy density wire-shaped supercapacitors based on vertically oriented nanosheet-array-coated carbon fibers. Adv. Sustainable Syst. 1, 1700044 (2017).
57.Mousa, M.G., Allam, S.M., and Rashad, E.M.: Maximum power extraction under different vector-control schemes and grid-synchronization strategy of a wind-driven brushless doubly-fed reluctance generator. ISA Trans. 72, 287297 (2018).
58.Sufyan, M., Rahim, N.A., Aman, M.M., Tan, C.K., and Raihan, S.R.S.: Sizing and applications of battery energy storage technologies in smart grid system: A review. J. Renewable Sustainable Energy 11, 014105 (2019).
59.Ren, J., Hou, Q., Chen, H., Liu, T., He, H., Wang, J., Shao, Q., Dong, M., Wu, S., Wang, N., Lin, J., Luo, Q., and Guo, Z.: Suppressing charge recombination and ultraviolet light degradation of perovskite solar cells using silicon oxide passivation. ChemElectroChem 6, 31673174 (2019).
60.Lin, B., Lin, Z., Chen, S., Yu, M., Li, W., Gao, Q., Dong, M., Shao, Q., Wu, S., Ding, T., and Guo, Z.: Surface intercalated spherical MoS2xSe2(1−x) nanocatalysts for highly efficient and durable hydrogen evolution reactions. Dalton Trans. 48, 82798287 (2019).
61.Lin, Z., Lin, B., Wang, Z., Chen, S., Wang, C., Dong, M., Gao, Q., Shao, Q., Ding, T., Liu, H., Wu, S., and Guo, Z.: Facile preparation of 1T/2H-Mo(S1−xSex)2 nanoparticles for boosting hydrogen evolution reaction. ChemCatChem 11, 22172222 (2019).
62.Liu, M., Yang, Z., Sun, H., Lai, C., Zhao, X., Peng, H., and Liu, T.: A hybrid carbon aerogel with both aligned and interconnected pores as interlayer for high-performance lithium–sulfur batteries. Nano Res. 9, 37353746 (2016).
63.Liu, M., Meng, Q., Yang, Z., Zhao, X., and Liu, T.: Ultra-long-term cycling stability of an integrated carbon–sulfur membrane with dual shuttle-inhibiting layers of graphene “nets” and a porous carbon skin. Chem. Commun. 54, 50905093 (2018).
64.Li, R., Zhu, X., Fu, Q., Liang, G., Chen, Y., Luo, L., Dong, M., Shao, Q., Lin, C., Wei, R., and Guo, Z.: Nanosheet-based Nb12O29 hierarchical microspheres for enhanced lithium storage. Chem. Commun. 55, 24932496 (2019).
65.Idrees, M., Batool, S., Kong, J., Zhuang, Q., Liu, H., Shao, Q., Lu, N., Feng, Y., Wujcik, E.K., Gao, Q., Ding, T., Wei, R., and Guo, Z.: Polyborosilazane derived ceramics–nitrogen sulfur dual doped graphene nanocomposite anode for enhanced lithium ion batteries. Electrochim. Acta 296, 925937 (2019).
66.Wang, C., Lan, F., He, Z., Xie, X., Zhao, Y., Hou, H., Guo, L., Murugadoss, V., Liu, H., Shao, Q., Gao, Q., Ding, T., Wei, R., and Guo, Z.: Iridium-based catalysts for solid polymer electrolyte electrocatalytic water splitting. ChemSusChem 12, 15761590 (2019).

Keywords

Type Description Title
WORD
Supplementary materials

Liu et al. supplementary material
Figures S1-S3

 Word (286 KB)
286 KB

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed