Skip to main content Accessibility help
×
Home

A highly sensitive co-resonant cantilever sensor for materials research: Application to nanomaterial characterization

  • Julia Körner (a1)

Abstract

Dynamic-mode cantilever sensors are used in many different applications but especially in materials research to study properties of novel (nano)materials. Decreasing sample sizes require an increase in sensitivity of the analysis tools. For cantilever-based methods that is achieved through a reduction in cantilever dimensions. However, the increase in sensitivity has to be balanced with the detectability as also for a small cantilever a reliable detection of its oscillatory state has to be ensured. A recently introduced co-resonant measurement principle for cantilever sensors addresses this challenge by coupling and eigenfrequency matching of a micro- and a nanocantilever. Here, the sensor concept is reviewed with focus on the application in materials research by the instructive example of an iron-filled carbon nanotube, giving insight into the features and benefits of the sensor concept and demonstrating the reliable derivation of magnetic sample properties.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: julia.koerner2k@gmail.com

References

Hide All
1.Gfeller, K.Y., Nugaeva, N., and Hegner, M.: Micromechanical oscillators as rapid biosensor for the detection of active growth of Escherichia coli. Biosensors and Bioelectronics 21, 528 (2005).
2.Martínez-Martín, D., Fläschner, G., Gaub, B., Martin, S., Newton, R., Beerli, C., Mercer, J., Gerber, C., and Müller, D.J.: Inertial picobalance reveals fast mass fluctuations in mammalian cells. Nature 550, 500 (2017).
3.Johnson, B.N. and Mutharasan, R.: Biosensing using dynamic-mode cantilever sensors: A review. Biosensors and Bioelectronics 32, 1 (2012).
4.Baller, M.K., Lang, H.P., Fritz, J., Gerber, C., Gimzewski, J.K., Drechsler, U., Rothuizen, H., Despont, M., Vettiger, P., Battiston, F.M., Ramseyer, J.P., Fornardo, P., Meyer, E., and Güntherodt, H-J.: A cantilever array-based artificial nose. Ultramicroscopy 82, 1 (2000).
5.Gross, B., Weber, D.P., Rffer, D., Buchter, A., Heimbach, F., Fontcuberta i Morral, A., Grundler, D., and Poggio, M.: Dynamic cantilever magnetometry of individual CoFeB nanotubes. Phys. Rev. B 93, 064409 (2016).
6.Gysin, U., Rast, S., Aste, A., Speliotis, T., Werle, C., and Meyer, E.: Magnetic properties of nanomagnetic and biomagnetic systems analyzed using cantilever magnetometry. Nanotechnology 22, 285715 (2011).
7.Körner, J., Reiche, C.F., Ghunaim, R., Fuge, R., Hampel, S., Büchner, B., and Mühl, T.: Magnetic properties of individual Co2FeGa Heusler nanoparticles studied at room temperature by a highly sensitive co-resonant cantilever sensor. Sci. Rep. 7, 8881 (2017).
8.Binnig, G., Quate, C.F., and Gerber, C.: Atomic force microscope. Phys. Rev. Lett. 56, 930 (1986).
9.Rossel, C., Bauer, P., Zech, D., Hofer, J., and Willemin, M.: Active microlevers as miniature torque magnetometers. J. Appl. Phys. 79, 8166 (1996).
10.Martín-Hernández, F., Bominaar-Silkens, I.M., Dekkers, M.J., and Maan, J.K.: High-field cantilever magnetometry as a tool for the determination of the magnetocrystalline anisotropy of single crystals. Tectonophysics 418, 21 (2005).
11.Löhndorf, M., Moreland, J., Kabos, P., and Rizzo, N.: Microcantilever torque magnetometry of thin magnetic films. J. Appl. Phys. 87, 5995 (2000).
12.Höpfl, T., Sander, D., Höche, H., and Kirschner, J.: Ultrahigh vacuum cantilever magnetometry with standard size single crystal substrates. Rev. Sci. Instrum. 72, 1495 (2001).
13.Harris, J.G.E., Awschalom, D.D., Matsukura, F., Ohno, H., Maranowski, K.D., and Gossard, A.C.: Integrated micromechanical cantilever magnetometry of Ga1−xMnxAs. Appl. Phys. Lett. 75, 1140 (1999).
14.Buchter, A., Nagel, J., Rüeffer, D., Xue, F., Weber, P.D., Kieler, O.F., Weinmann, T., Kohlmann, J., Zorin, A.B., Russo-Averchi, E., Huber, R., Berberich, P., Fontcuberta i Morral, A., Kemmler, M., Kleiner, R., Koelle, D., Grundler, D., and Poggio, M.: Reversal mechanism of an individual Ni nanotube simultaneously studied by torque and SQUID magnetometry. Phys. Rev. Lett. 111, 067202 (2013).
15.Weber, D.P., Rüffer, D., Buchter, A., Xue, F., Russo-Averchi, E., Huber, R., Berberich, P., Arbiol, J., Fontcuberta i Morral, A., Grundler, D., and Poggio, M.: Cantilever magnetometry of individual Ni nanotubes. Nano Lett. 12, 6139 (2012).
16.Tosolini, G., Michalik, J.M., Córdoba, R., de Teresa, J.M., Pérez-Murano, F., and Bausells, J.: Magnetic properties of cobalt microwires measured by piezoresistive cantilever magnetometry. Nanofabrication 1, 80 (2014).
17.Banerjee, P., Wolny, F., Pelekhov, D.V., Herman, M.R., Fong, K.C., Weissker, U., Mühl, T., Obukhov, Y., Leonhardt, A., Büchner, B., and Hammel, C.: Magnetization reversal in an individual 25 nm iron-filled carbon nanotube. Appl. Phys. Lett. 96, 252505 (2010).
18.Giessibl, F.J., Pielmeier, F., Eguchi, T., An, T., and Hasegawa, Y.: Comparison of force sensors for atomic force microscopy based on quartz tuning forks and length-extensional resonators. Phys. Rev. B 84, 125409 (2011).
19.Ilic, B., Yang, Y., and Craighead, H.G.: Virus detection using nanoelectromechanical devices. Appl. Phys. Lett. 85, 2604 (2004).
20.Li, M., Tang, X., and Roukes, M.L.: Ultra-sensitive NEMS-based cantilevers for sensing, scanned probe and very high-frequency applications. Nat. Nanotechnol. 2, 114 (2007).
21.Gil-Santos, E., Ramos, D., Martinez, J., Fernandez-Regulez, M., Garcia, R., San Paulo, A., Calleja, M., and Tamayo, J.: Nanomechanical mass sensing and stiffness spectrometry based on two-dimensional vibrations of resonant nanowires. Nat. Nanotechnol. 5, 641 (2010).
22.Nichol, J.M., Hemesath, E.R., Lauhin, L.J., and Budakian, R.: Displacement detection of silicon nanowires by polarization-enhanced fiber-optic interferometry. Appl. Phys. Lett. 93, 193110 (2008).
23.Lochon, F., Dufour, I., and Rebiére, D.: An alternative solution to improve sensitivity of resonant microcantilever chemical sensors: Comparison between using high-order modes and reducing dimensions. Sens. Actuators, B 108, 979 (2005).
24.Yasumura, K.Y., Stowe, T.D., Chow, E.M., Pfafman, T., Kenny, T.W., Stipe, B.C., and Rugar, D.: Quality factors in micron- and submicron-thick cantilevers. J. Microelectromech. Syst. 9, 117 (2000).
25.Reiche, C.F., Körner, J., Büchner, B., and Mühl, T.: Introduction of a co-resonant detection concept for mechanical oscillation-based sensors. Nanotechnology 26, 335501 (2015).
26.Körner, J., Reiche, C.F., Büchner, B., Gerlach, G., and Mühl, T.: Signal enhancement in cantilever magnetometry based on a co-resonantly coupled sensor. Beilstein J. Nanotechnol. 7, 1033 (2016).
27.Lipert, K., Bahr, S., Wolny, F., Atkinson, P., Weissker, U., Mühl, T., Schmidt, O.G., Büchner, B., and Klingeler, R.: An individual iron nanowire-filled carbon nanotube probed by micro-hall magnetometry. Appl. Phys. Lett. 97, 212503 (2010).
28.Wolny, F., Mühl, T., Weissker, U., Lipert, K., Schumann, J., Leonhardt, A., and Büchner, B.: Iron filled carbon nanotubes as novel monopole-like sensors for quantitative magnetic force microscopy. Nanotechnology 21, 435501 (2010).
29.Wolny, F., Obukhov, Y., Mühl, T., Weissker, U., Philippi, S., Leonhardt, A., Banerjee, P., Reed, A., Xiang, G., Adur, R., Lee, I., Hauser, A.J., Yang, A.J., Pelekhov, D.V., Büchner, B., and Hammel, P.C.: Quantitative magnetic force microscopy on permalloy dots using an iron filled carbon nanotube probe. Ultramicroscopy 111, 1360 (2011).
30.Philippi, S., Weissker, U., Mühl, T., Leonhardt, A., and Büchner, B.: Room temperature magnetometry of an individual iron filled carbon nanotube acting as nanocantilever. J. Appl. Phys. 110, 084319 (2011).
31.Rossing, T.D. and Fletcher, N.H.: Principles of Vibration and Sound, 2nd ed. (Springer-Verlag, Berlin Heidelberg, 2004).
32.Reiche, C.F., Körner, J., Büchner, B., and Mühl, T.: Bidirectional scanning force microscopy probes with co-resonant sensitivity enhancement. In Proceedings of IEEE 15th International Conference on Nanotechnology (IEEE, Italy, 2015); p. 1222.
33.Rast, S., Wattinger, C., Gysin, U., and Meyer, E.: Dynamics of damped cantilevers. Rev. Sci. Instrum. 71, 2772 (2000).
34.Körner, J., Reiche, C.F., Büchner, B., Mühl, T., and Gerlach, G.: Employing electro-mechanical analogies for co-resonantly coupled cantilever sensors. J. Sens. Sens. Syst. 5, 242 (2016).
35.Körner, J.: Effective sensor properties and sensitivity considerations of a dynamic co-resonantly coupled cantilever sensor. Beilstein J. Nanotechnol. (2018). (in press).
36.Körner, J.: Effective sensor properties of a novel co-resonant cantilever sensor. In Proceedings Eurosensors (MDPI, Graz, Austria, 2018).
37.Blanter, M.S., Golovin, I.S., Neuhäuser, H., and Sinning, H-R.: Internal Friction in Metallic Materials—A Handbook, 1st ed. (Springer, Berlin, Heidelberg, 2007).
38.Körner, J., Reiche, C.F., Büchner, B., and Mühl, T.: Theory and application of a novel co-resonant cantilever sensor. TM – Tech. Mess. 85, 410 (2018).
39.Informations about the Simulation Software Finite Element Method Magnetics—FEMM (2014). Available at: http://www.femm.info/wiki/HomePage (accessed May, 2018).
40.Stoner, E.C. and Wohlfarth, E.P.: Mechanism of magnetic hysteresis in heterogeneous alloys. IEEE Trans. Magn. 27, 3475 (1991).
41.Lutz, M.U., Weissker, U., Wolny, F., Müller, C., Löffler, M., Mühl, T., Leonhardt, A., Büchner, B., and Klingeler, R.: Magnetic properties of α-Fe and Fe3C nanowires. J. Phys.: Conf. Ser. 200, 072062 (2010).
42.Stipe, B.C., Mamin, H.J., Stowe, T.D., Kenny, T.W., and Rugar, D.: Magnetic dissipation and fluctuations in individual nanomagnets measured by ultrasensitive cantilever magnetometry. Phys. Rev. Lett. 86, 2874 (2001).
43.Weber, D.P.: Dynamic Cantilever Magnetometry of Individual Ferromagnetic Nanotubes. Ph.D. thesis, Universität Basel, Fakultät für Naturwissenschaften (Basel, Switzerland, 2014).
44.Sidles, J.A., Garbini, J.L., Bruland, K.J., Rugar, D., Züger, O., Hoen, S., and Yannoni, C.S.: Magnetic resonance force microscopy. Rev. Mod. Phys. 67, 249 (1995).
45.Körner, J.: Gekoppelte Oszillatoren als neuartige Sensoren für Cantilever-Magnetometrie. Ph.D. thesis, Technische Universität Dresden, Fakultät Elektrotechnik und Informationstechnik, (Dresden, Germany, 2016).
46.Chikazumi, S.: Physics of Magnetism (John Wiley and Sons, London, Sydney, 1964).
47.Reiche, C.F., Vock, S., Neu, V., Schultz, L., Büchner, B., and Mühl, T.: Bidirectional quantitative force gradient microscopy. New J. Phys. 17, 013014 (2015).

Keywords

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed