Skip to main content Accessibility help

Highly responsive and selective formaldehyde sensor based on La3+-doped barium stannate microtubes prepared by electrospinning

  • Anish Bhattacharya (a1), Yufang Jiang (a1), Qi Gao (a1), Xiangfeng Chu (a1), Yongping Dong (a1), Shiming Liang (a2) and Amit K. Chakraborty (a3)...


La3+-doped BaSnO3 microtubes (La3+–BaSnO3) have been synthesized by electrospinning method, and the influence of La3+ content on the sensing properties of BaSnO3 for detection of formaldehyde vapor has been investigated. The as-prepared materials have been characterized using XRD, SEM, DSC, XPS, and UV-Vis. The La3+–BaSnO3 sample doped with 4 wt% La exhibited a response as high as 220 to formaldehyde vapor (1000 ppm concentration) along with a very low detection limit of 0.1 ppm at 270 °C, whereas at 140 °C, it exhibited a response of 80 and detection limit of 1 ppm. In addition, the sensor showed excellent selectivity of 57 to formaldehyde at 140 °C when compared with other vapors. Further, the sensor also showed good repeatability and stability over a long period of time suggesting its strong potential as a commercial formaldehyde sensor.


Corresponding author

a)Address all correspondence to these authors. e-mail: or


Hide All
1.Zhang, Y., Luo, L., Han, C., Lv, H., Chen, D., Shen, G., Wu, K., Pan, S., Ye, F., Zhang, Y., Luo, L., Han, C., Lv, H., Chen, D., Shen, G., Wu, K., Pan, S., and Ye, F.: Design, synthesis, and biological activity of tetrahydrobenzo[4,5]thieno[2,3-d]pyrimidine derivatives as anti-inflammatory agents. Molecules 22, 1960 (2017).
2.Zhang, F., Qu, G., Mohammadi, E., Mei, J., and Diao, Y.: Solution-processed nanoporous organic semiconductor thin films: Toward health and environmental monitoring of volatile markers. Adv. Funct. Mater. 27, 1701117 (2017).
3.Xu, X-Y. and Yan, B.: Eu(III)-functionalized ZnO@MOF heterostructures: Integration of pre-concentration and efficient charge transfer for the fabrication of a ppb-level sensing platform for volatile aldehyde gases in vehicles. J. Mater. Chem. A 5, 2215 (2017).
4.Zhang, Y., Zhang, J., Liu, Q., Zhang, Y., Zhang, J., and Liu, Q.: Gas sensors based on molecular imprinting technology. Sensors 17, 1567 (2017).
5.Zilberstein, G., Zilberstein, R., Zilberstein, S., Maor, U., Baskin, E., Zhang, S., and Righetti, P.G.: A miniaturized sensor for detection of formaldehyde fumes. Electrophoresis 38, 2168 (2017).
6.Wang, X., Li, H., Ni, M., Wang, L., Liu, L., Wang, H., and Guo, X.: Excellent formaldehyde gas-sensing properties of ruptured Nd-doped In2O3 porous nanotubes. J. Electron. Mater. 46, 363 (2017).
7.Wang, H., Chi, Y., Gao, X., Lv, S., Chu, X., Wang, C., Zhou, L., and Yang, X.: Amperometric formaldehyde sensor based on a Pd nanocrystal modified C/Co2P electrode. J. Chem. 2017, 1 (2017).
8.Pötzelberger, I., Mardare, C.C., Uiberlacker, L.M., Hild, S., Mardare, A.I., and Hassel, A.W.: Electrocatalysis on copper–palladium alloys for amperometric formaldehyde sensing. RSC Adv. 7, 6031 (2017).
9.Barsan, N., Koziej, D., and Weimar, U.: Metal oxide-based gas sensor research: How to? Sens. Actuators, B 121, 18 (2007).
10.Dey, A.: Semiconductor metal oxide gas sensors: A review. Mater. Sci. Eng., B 229, 206 (2018).
11.Chu, X., Dai, P., Liang, S., Bhattacharya, A., Dong, Y., and Epifani, M.: The acetone sensing properties of ZnFe2O4-graphene quantum dots (GQDs) nanocomposites at room temperature. Phys. E 106, 326 (2018).
12.Chu, X., Wang, J., Bai, L., Dong, Y., and Sun, W.: The gas sensing properties of NiGa2O4 nanofibers prepared by electrospinning method. Mater. Sci. Eng., B 228, 45 (2018).
13.Chu, X., Wang, J., Bai, L., Dong, Y., Sun, W., and Zhang, W.: Trimethylamine and ethanol sensing properties of NiGa2O4 nano-materials prepared by co-precipitation method. Sens. Actuators, B 255, 2058 (2018).
14.Ranjan, P., Tiwary, P., Chakraborty, A.K., and Ajay, R.M.: Graphene oxide based free-standing films for humidity and hydrogen peroxide sensing. J. Mater. Sci.: Mater. Electron. 29, 15946 (2018).
15.Chatterjee, S.G., Samanta, S., Dey, D., Chatterjee, S., Santra, S., Guha, P.K., and Chakraborty, A.K.: Near room temperature sensing of nitric oxide using SnO2/Ni-decorated natural cellulosic graphene nanohybrid film. J. Mater. Sci.: Mater. Electron. 29, 20162 (2018).
16.Gupta Chatterjee, S., Chatterjee, S., Ray, A.K., and Chakraborty, A.K.: Graphene–metal oxide nanohybrids for toxic gas sensor: A review. Sens. Actuators, B 221, 1170 (2015).
17.Tiwary, P., Mahapatra, R., and Chakraborty, A.K.: ZnO nanobristles prepared by one-step thermal decomposition of zinc nitrate as ultra-high response ethanol sensor at room temperature. J. Mater. Sci.: Mater. Electron., 1 (2019).
18.Chakraborty, I., Chakrabarty, N., Senapati, A., and Chakraborty, A.K.: CuO@NiO/Polyaniline/MWCNT nanocomposite as high-performance electrode for supercapacitor. J. Phys. Chem. C 122, 27180 (2018).
19.Augustyn, V.: Tuning the interlayer of transition metal oxides for electrochemical energy storage. J. Mater. Res. 32, 2 (2017).
20.Wang, G., Leng, X., Han, S., Shao, Y., Wei, S., Liu, Y., Lian, J., and Jiang, Q.: How to improve the stability and rate performance of lithium-ion batteries with transition metal oxide anodes. J. Mater. Res. 32, 16 (2017).
21.Pearson, A.J.: Structure formation and evolution in semiconductor films for perovskite and organic photovoltaics. J. Mater. Res. 32, 1798 (2017).
22.Ostrick, B., Fleischer, M., Lampe, U., and Meixner, H.: Preparation of stoichiometric barium stannate thin films: Hall measurements and gas sensitivities. Sens. Actuators, B 44, 601 (1997).
23.Lampe, U., Gerblinger, J., and Meixner, H.: Nitrogen oxide sensors based on thin films of BaSnO3. Sens. Actuators, B 26, 97 (1995).
24.Lampe, U., Gerblinger, J., and Meixner, H.: Carbon-monoxide sensors based on thin films of BaSnO3. Sens. Actuators, B 25, 657 (1995).
25.Reddy, C.V.G., Manorama, S.V., Rao, V.J., Lobo, A., and Kulkarni, S.K.: Noble metal additive modulation of gas sensitivity of BaSnO3, explained by a work function based model. Thin Solid Films 348, 261 (1999).
26.Lu, W.Z., Jiang, S.L., Zhou, D.X., and Gong, S.P.: Structural and electrical properties of Ba(Sn,Sb)O3 electroceramics materials. Sens. Actuators, A 80, 35 (2000).
27.Tao, S., Gao, F., Liu, X., and Sørensen, O.T.: Ethanol-sensing characteristics of barium stannate prepared by chemical precipitation. Sens. Actuators, B 71, 223 (2000).
28.Ochoa, Y.H., Schipani, F., Aldao, C.M., Rodríguez-Páez, J.E., and Ponce, M.A.: Modification of sensitivity of BaSnO3 sensor due to parameters of synthesis and formation of the device. J. Mater. Res. 30, 3423 (2015).
29.Zhang, W., Tang, J., and Ye, J.: Structural, photocatalytic, and photophysical properties of perovskite MSnO3 (M = Ca, Sr, and Ba) photocatalysts. J. Mater. Res. 22, 1859 (2007).
30.Buscaglia, M.T., Leoni, M., Viviani, M., and Buscaglia, V.: Synthesis and characterization of BaSn(OH)6 and BaSnO3 acicular particles. J. Mater. Res. 18, 560 (2003).
31.Karakas, H.: Electrospinning of nanofibers and their applications. MDT “Electrospinning” 3, 1 (2014).
32.Patil, J.V., Mali, S.S., Kamble, A.S., Hong, C.K., Kim, J.H., and Patil, P.S.: Electrospinning: A versatile technique for making of 1D growth of nanostructured nanofibers and its applications: An experimental approach. Appl. Surf. Sci. 423, 641 (2017).
33.Bhardwaj, N. and Kundu, S.C.: Electrospinning: A fascinating fiber fabrication technique. Biotechnol. Adv. 28, 325 (2010).
34.Kannan, B., Cha, H., and Hosie, I.C.: Nano-Size Polym (Springer International Publishing, Cham, 2016); p. 309.
35.Huang, Z-M., Zhang, Y-Z., Kotaki, M., and Ramakrishna, S.: A review on polymer nanofibers by electrospinning and their applications in nanocomposites. Compos. Sci. Technol. 63, 2223 (2003).
36.Chakrabarty, N. and Chakraborty, A.K.: Controlling the electrochemical performance of β-Ni(OH)2/carbon nanotube hybrid electrodes for supercapacitor applications by La doping: A systematic investigation. Electrochim. Acta 297, 173 (2019).
37.Ochoa Muñoz, Y.H., Ponce, M., and Rodríguez Páez, J.E.: Comparative study of two wet chemical methods of BaSnO3 synthesis: Mechanism of formation of mixed oxide. Powder Technol. 279, 86 (2015).
38.Lu, W. and Schmidt, H.: Lyothermal synthesis of nanocrystalline BaSnO3 powders. Ceram. Int. 34, 645 (2008).
39.Chu, X.: Dilute CH3SH-sensing characteristics of BaSnO3 thick film sensor. Mater. Sci. Eng., B 106, 305 (2004).
40.Watson, S.M.D., Coleman, K.S., and Chakraborty, A.K.: A new route to the production and nanoscale patterning of highly smooth, ultrathin zirconium oxide films. ACS Nano 2, 643 (2008).
41.Butenko, Y.V., Krishnamurthy, S., Chakraborty, A.K., Kuznetsov, V.L., Dhanak, V.R., Hunt, M.R.C., and Šiller, L.: Photoemission study of onionlike carbons produced by annealing nanodiamonds. Phys. Rev. B 71, 075420 (2005).
42.Nguyen, T.P., Ip, J., Jolinat, P., and Destruel, P.: XPS and sputtering study of the Alq3/electrode interfaces in organic light emitting diodes. Appl. Surf. Sci. 172, 75 (2001).
43.Gao, L., Ren, F., Cheng, Z., Zhang, Y., Xiang, Q., and Xu, J.: Porous corundum-type In2O3 nanoflowers: Controllable synthesis, enhanced ethanol-sensing properties and response mechanism. CrystEngComm 17, 3268 (2015).
44.Wang, C., Cui, X., Liu, J., Zhou, X., Cheng, X., Sun, P., Hu, X., Li, X., Zheng, J., and Lu, G.: Design of superior ethanol gas sensor based on Al-doped NiO nanorod-flowers. ACS Sens. 1, 131 (2016).
45.Sunding, M.F., Hadidi, K., Diplas, S., Løvvik, O.M., Norby, T.E., and Gunnæs, A.E.: XPS characterisation of in situ treated lanthanum oxide and hydroxide using tailored charge referencing and peak fitting procedures. J. Electron Spectrosc. Relat. Phenom. 184, 399 (2011).
46.Li, Y.X., Guo, Z., Su, Y., Jin, X.B., Tang, X.H., Huang, J.R., Huang, X.J., Li, M.Q., and Liu, J.H.: Hierarchical morphology-dependent gas-sensing performances of three-dimensional SnO2 Nanostructures. ACS Sens. 2, 102 (2017).
47.Zhang, Y., Zhang, J., Zhao, J., Zhu, Z., and Liu, Q.: Ag–LaFeO3 fibers, spheres, and cages for ultrasensitive detection of formaldehyde at low operating temperatures. Phys. Chem. Chem. Phys. 19, 6973 (2017).
48.Mishra, R.K., Murali, G., Kim, T-H., Kim, J.H., Lim, Y.J., Kim, B-S., Sahay, P.P., and Lee, S.H.: Nanocube In2O3@RGO heterostructure based gas sensor for acetone and formaldehyde detection. RSC Adv. 7, 38714 (2017).
49.Chen, Z-W., Hong, Y-Y., Lin, Z-D., Liu, L-M., and Zhang, X-W.: Enhanced formaldehyde gas sensing properties of ZnO nanosheets modified with graphene. Electron. Mater. Lett. 13, 270 (2017).
50.Wu, X.H., De Wang, Y., Liu, H.L., Li, Y.F., and Zhou, Z.L.: Preparation and gas-sensing properties of perovskite-type MSnO3 (M = Zn, Cd, Ni). Mater. Lett. 56, 732 (2002).
51.Gao, Q., Ao, S., Chen, H., Zou, X., Wei, C., and Li, G-D.: Enhanced formaldehyde sensing properties of IrO2-loaded porous foam-like Ga1.4In0.6O3 nanofibers with ultrathin pore walls. J. Alloys Compd. 732, 856 (2018).
52.Wang, S., Cao, J., Cui, W., Fan, L., Li, X., and Li, D.: Oxygen vacancies and grain boundaries potential barriers modulation facilitated formaldehyde gas sensing performances for In2O3 hierarchical architectures. Sens. Actuators, B Chem. 255, 159 (2018).
53.Chi, C-Y., Chen, H-I., Chen, W-C., Chang, C-H., and Liu, W-C.: Formaldehyde sensing characteristics of an aluminum-doped zinc oxide (AZO) thin-film-based sensor. Sens. Actuators, B Chem. 255, 3017 (2018).
54.Sun, J., Bai, S., Tian, Y., Zhao, Y., Han, N., Luo, R., Li, D., and Chen, A.: Hybridization of ZnSnO3 and rGO for improvement of formaldehyde sensing properties. Sens. Actuators, B Chem. 257, 29 (2018).
55.Zhang, S., Song, P., Yang, Z., and Wang, Q.: Facile hydrothermal synthesis of mesoporous In2O3 nanoparticles with superior formaldehyde-sensing properties. Phys. E 97, 38 (2018).
56.Bai, S., Tian, Y., Zhao, Y., Fu, H., Tang, P., Luo, R., Li, D., Chen, A., and Liu, C.C.: Construction of NiO@ZnSnO3 hierarchical microspheres decorated with NiO nanosheets for formaldehyde sensing. Sens. Actuators, B 259, 908 (2018).
57.Ge, W., Chang, Y., Natarajan, V., Feng, Z., Zhan, J., and Ma, X.: In2O3–SnO2 hybrid porous nanostructures delivering enhanced formaldehyde sensing performance. J. Alloys Compd. 746, 36 (2018).
58.Wang, T., Liu, B., Li, Q., and Wang, S.: Controllable construction of Cr2O3–ZnO hierarchical heterostructures and their formaldehyde gas sensing properties. Mater. Lett. 221, 260 (2018).
59.Hussain, S., Aslam, N., Yang, X., Javeed, M. S., Xu, Z., Wang, M., Liu, G., and Qiao, G.: Unique polyhedron CeO2 nanostructures for superior formaldehyde gas-sensing performances. Ceram. Int. 44(16), 19624 (2018).
60.Liu, D., Pan, J., Tang, J., Liu, W., Bai, S., and Luo, R.: Ag decorated SnO2 nanoparticles to enhance formaldehyde sensing properties. J. Phys. Chem. Solids 124, 36 (2018).
61.Rong, X., Chen, D., Qu, G., Li, T., Zhang, R., and Sun, J.: Effects of graphene on the microstructures of SnO2@rGO nanocomposites and their formaldehyde-sensing performance. Sens. Actuators, B Chem. 269, 223 (2018).
62.Yu, H., Li, J., Tian, Y., and Li, Z.: Environmentally friendly recycling of SnO2/Sn3O4 from tin anode slime for application in formaldehyde sensing material by Ag/Ag2O modification. J. Alloys Compd. 765, 624 (2018).
63.Zhang, D., Jiang, C., and Wu, J.: Layer-by-layer assembled In2O3 nanocubes/flower-like MoS2 nanofilm for room temperature formaldehyde sensing. Sens. Actuators, B Chem. 273, 176 (2018).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed