Skip to main content Accessibility help
×
Home

Highly fluorescent CdTe nanocrystals: Synthesis, characterization, property, mechanism, and application as a sensor for biomolecule analysis

  • Jun Yao (a1), Mei Yang (a1) and Yixiang Duan (a1)

Abstract

Highly luminescent CdTe quantum dots (QDs) were prepared through a fast, facile, and straightforward method. The crystal structure, particle size, optical properties as well as molecular interactions between the CdTe QDs and their capping agents have been investigated by high resolution transmission electron microscopy, selected area electron diffraction, scanning transmission electron microscope–energy dispersive x-ray spectroscopy, UV-vis absorption, photoluminescence, and Fourier transform infrared, respectively. The results illustrate that the CdTe nanoparticles exhibit cubic structure and the average crystallite size is 2.3 nm. Meanwhile, fluorescence and UV-vis spectroscopic techniques were used to study the interaction between hemin and the well-defined CdTe QDs. In weak basic media, the fluorescence of CdTe QDs was quenched notably by hemin, and the quenching values were proportional to the concentration of the quencher in a certain range. The quenching mechanism was discussed to be a dynamic quenching procedure, collisional process, and hemin as a fluorescence quencher donated its electron to CdTe QDs to occupy the hole and accordingly disrupted the electron–hole recombination.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yduan@scu.edu.cn

References

Hide All
1. Yao, J., Sun, Y., Yang, M., and Duan, Y.: Chemistry, physics and biology of graphene-based nanomaterials: New horizons for sensing, imaging and medicine. J. Mater. Chem. 22(29), 14313 (2012).
2. Yang, M., Yao, J., and Duan, Y.: Graphene and its derivatives for cell biotechnology. Analyst 138(1), 72 (2013).
3. Kamat, P.V., Tvrdy, K., Baker, D.R., and Radich, J.G.: Beyond photovoltaics: Semiconductor nanoarchitectures for liquid-junction solar cells. Chem. Rev. 110(11), 6664 (2010).
4. Medintz, I.L., Stewart, M.H., Trammell, S.A., Susumu, K., Delehanty, J.B., Mei, B.C., Melinger, J.S., Blanco-Canosa, J.B., Dawson, P.E., and Mattoussi, H.: Quantum-dot/dopamine bioconjugates function as redox coupled assemblies for in vitro and intracellular pH sensing. Nat. Mater. 9(8), 676 (2010).
5. Wu, L., Quan, B., Liu, Y., Song, R., and Tang, Z.: One-pot synthesis of liquid Hg/solid beta-HgS metal-semiconductor heterostructures with unique electrical properties. ACS Nano 5(3), 2224 (2011).
6. Chaudhuri, R.G. and Paria, S.: Core/shell nanoparticles: Classes, properties, synthesis mechanisms, characterization, and applications. Chem. Rev. 112(4), 2373 (2012).
7. So, M.K., Xu, C.J., Loening, A.M., Gambhir, S.S., and Rao, J.H.: Self-illuminating quantum dot conjugates for in vivo imaging. Nat. Biotechnol. 24(3), 339 (2006).
8. Wu, X.Y., Liu, H.J., Liu, J.Q., Haley, K.N., Treadway, J.A., Larson, J.P., Ge, N., Peale, F., and Bruchez, M.P.: Immunofluorescent labeling of cancer marker Her2 and other cellular targets with semiconductor quantum dots. Nat. Biotechnol. 21(1), 41 (2003).
9. Mattoussi, H., Mauro, J.M., Goldman, E.R., Anderson, G.P., Sundar, V.C., Mikulec, F.V., and Bawendi, M.G.: Self-assembly of CdSe-ZnS quantum dot bioconjugates using an engineered recombinant protein. J. Am. Chem. Soc. 122(49), 12142 (2000).
10. Nozik, A.J., Beard, M.C., Luther, J.M., Law, M., Ellingson, R.J., and Johnson, J.C.: Semiconductor quantum dots and quantum dot arrays and applications of multiple exciton generation to third-generation photovoltaic solar cells. Chem. Rev. 110(11), 6873 (2010).
11. Samia, A.C.S., Chen, X.B., and Burda, C.: Semiconductor quantum dots for photodynamic therapy. J. Am. Chem. Soc. 125(51), 15736 (2003).
12. Shi, Y., Wang, J., Li, S., Wang, Z., Zang, X., Zu, X., Zhang, X., Guo, F., and Tong, G.: Photoluminescence-enhanced CdTe quantum dots by hyperbranched poly (amidoamine) s functionalization. J. Mater. Res. 28(14), 1940 (2013).
13. Gao, X.H. and Nie, S.M.: Doping mesoporous materials with multicolor quantum dots. J. Phys. Chem. B 107(42), 11575 (2003).
14. Gao, X.H. and Nie, S.M.: Quantum dot-encoded mesoporous beads with high brightness and uniformity: Rapid readout using flow cytometry. Anal. Chem. 76(8), 2406 (2004).
15. Aragay, G., Pino, F., and Merkoçi, A.: Nanomaterials for sensing and destroying pesticides. Chem. Rev. 112(10), 5317 (2012).
16. Zhou, H., Zhou, G., Du, Q., Bi, H., and Zhou, J.: Surfactant-assisted reflux synthesis of PbS nanostructures and their properties. J. Mater. Res. 1(1), 1 (2012).
17. Jaiswal, J.K., Mattoussi, H., Mauro, J.M., and Simon, S.M.: Long-term multiple color imaging of live cells using quantum dot bioconjugates. Nat. Biotechnol. 21(1), 47 (2003).
18. Somers, R.C., Bawendi, M.G., and Nocera, D.G.: CdSe nanocrystal based chem-/bio-sensors. Chem. Soc. Rev. 36(4), 579 (2007).
19. Dubertret, B., Skourides, P., Norris, D.J., Noireaux, V., Brivanlou, A.H., and Libchaber, A.: In vivo imaging of quantum dots encapsulated in phospholipid micelles. Science 298(5599), 1759 (2002).
20. Kobayashi, H., Ogawa, M., Alford, R., Choyke, P.L., and Urano, Y.: New strategies for fluorescent probe design in medical diagnostic imaging. Chem. Rev. 110(5), 2620 (2010).
21. Chen, X-F., Zhou, M., Chang, Y-P., Ren, C-L., Chen, H-L., and Chen, X-G.: Novel synthesis of beta-cyclodextrin functionalized CdTe quantum dots as luminescent probes. Appl. Surf. Sci. 263, 491 (2012).
22. Qiao, X., Jian-Hao, W., Zhan, W., Zhao-Hui, Y., Qin, Y., and Yuan-Di, Z.: Interaction of CdTe quantum dots with DNA. Electrochem. Commun. 10(9), 1337 (2008).
23. Callan, J.F., Mulrooney, R.C., Kamila, S., and McCaughan, B.: Anion sensing with luminescent quantum dots: A modular approach based on the photoinduced electron transfer (PET) mechanism. J. Fluoresc. 18(2), 527 (2008).
24. Neuman, D., Ostrowski, A.D., Mikhailovsky, A.A., Absalonson, R.O., Strouse, G.F., and Ford, P.C.: Quantum dot fluorescence quenching pathways with Cr(III) complexes. Photosensitized NO production from trans-Cr(cyclam)(ONO)(2)(+) J. Am. Chem. Soc. 130(1), 168 (2008).
25. Jin, T., Fujii, F., Yamada, E., Nodasaka, Y., and Kinjo, M.: Preparation and characterization of thiacalix[4]arene coated water-soluble CdSe/ZnS quantum dots as a fluorescent probe for Cu2+ ions. Comb. Chem. High Throughput Screening 10(6), 473 (2007).
26. Wang, Q., Yang, L., Fang, T., Wu, S., Liu, P., Min, X., and Li, X.: Interactions between CdSe/CdS quantum dots and DNA through spectroscopic and electrochemical methods. Appl. Surf. Sci. 257(23), 9747 (2011).
27. Tsiftsoglou, A.S., Tsamadou, A.I., and Papadopoulou, L.C.: Heme as key regulator of major mammalian cellular functions: Molecular, cellular, and pharmacological aspects. Pharmacol. Ther. 111(2), 327 (2006).
28. Lu, N., Yi, L., Deng, Q., Li, J., Gao, Z., and Li, H.: The interaction between desferrioxamine and hemin: A potential toxicological implication. Toxicol. In Vitro 26(5), 732 (2012).
29. Lu, N., Zhang, M., Li, H., and Gao, Z.: Completely different effects of desferrioxamine on hemin/nitrite/H2O2-induced bovine serum albumin nitration and oxidation. Chem. Res. Toxicol. 21(6), 1229 (2008).
30. Yu, W.W., Qu, L., Guo, W., and Peng, X.: Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chem. Mater. 15(14), 2854 (2003).
31. Colthup, N., Daly, L., and Wiberley, S.: Introduction to Infrared and Raman Spectroscopy (Hacourt Brace Jovanovich, 1990), p. 291.
32. Han, S.W., Han, H.S., and Kim, K.: Infrared and Raman spectra of 4-cyanobenzoic acid on powdered silver. Vib. Spectrosc. 21(1–2), 133 (1999).
33. Tao, Y.T.: Structural comparison of self-assembled monolayers of n-alkanoic acids on the surfaces of silver, copper, and aluminum. J. Am. Chem. Soc. 115(10), 4350 (1993).
34. Wang, S-G., Yang, Q-B., Bai, J., Song, Y., Zhang, C-Q., and Li, Y-X.: Transferring CdTe nanoparticles from liquid phase to polyvinylpyrrolidone nanofibers by electrospinning and detecting its photoluminescence property. Chem. Res. Chin. Univ. 24(4), 459 (2008).
35. Zhang, H., Zhou, Z., Yang, B., and Gao, M.: The influence of carboxyl groups on the photoluminescence of mercaptocarboxylic acid-stabilized CdTe nanoparticles. J. Phys. Chem. B 107(1), 8 (2003).
36. Huang, D., Geng, F., Liu, Y., Wang, X., Jiao, J., and Yu, L.: Biomimetic interactions of proteins with functionalized cadmium sulfide quantum dots. Colloids Surf., A 392(1), 191 (2011).
37. Xiao, Q., Huang, S., Qi, Z-D., Zhou, B., He, Z-K., and Liu, Y.: Conformation, thermodynamics and stoichiometry of HSA adsorbed to colloidal CdSe/ZnS quantum dots. Biochim. Biophys. Acta 1784(7), 1020 (2008).
38. Peng, J., Liu, S., Yan, S., Fan, X., and He, Y.: A study on the interaction between CdTe quantum dots and chymotrypsin using optical spectroscopy. Colloids Surf., A 359, 13 (2010).
39. Chen, L., Zhang, X. , Zhang, C., Zhou, G., Zhang, W., Xiang, D., He, Z., and Wang, H.: Dual-color fluorescence and homogeneous immunoassay for the determination of human enterovirus 71. Anal. Chem. 83, 7316 (2011).
40. Comby, S. and Gunnlaugsson, T.: Luminescent lanthanide-functionalized gold nanoparticles: Exploiting the interaction with bovine serum albumin for potential sensing applications. ACS Nano. 5(9), 7184 (2011).
41. Mikhail, B.Y. and Achilefu, S.: Fluorescence lifetime measurements and biological imaging. Chem. Rev. 110, 2641 (2010).
42. Lakowicz, J.R.: Principles of Fluorescence Spectroscopy (Springer, New York, NY, 2009).
43. Azzazy, H.M.E., Mansour, M.M.H., and Kazmierczak, S.C.: From diagnostics to therapy: Prospects of quantum dots. Clin. Biochem. 40(13–14), 917 (2007).
44. Stryer, L.: Fluorescence energy transfer as a spectroscopic ruler. Annu. Rev. Biochem. 47, 819 (1978).
45. Pons, T. and Mattoussi, H.: Investigating biological processes at the single molecule level using luminescent quantum dots. Ann. Biomed. Eng. 37(10), 1934 (2009).
46. Sun, J.F., Ren, C.L., Liu, L.H., and Chen, X.G.: CdTe quantum dots as fluorescence sensor for the determination of vitamin B6 in aqueous solution. Chin. Chem. Lett. 19(7), 855 (2008).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed