Skip to main content Accessibility help

Highly controlled crystallite size and crystallinity of pure and iron-doped anatase-TiO2 nanocrystals by continuous flow supercritical synthesis

  • Jian-Li Mi (a1), Simon Johnsen (a1), Casper Clausen (a1), Peter Hald (a1), Nina Lock (a1), Lasse Sø (a1) and Bo B. Iversen (a1)...


High purity anatase titanium dioxide (TiO2) and iron (Fe)-doped TiO2 nanocrystals were prepared by a continuous flow synthesis method using isopropanol-water mixtures as solvent in supercritical or near-critical conditions. The method allows complete control of size (5–20 nm) and crystallinity (10–100%) of the nanoparticles and provides quick synthesis with a residence time of ∼10 s that can be scaled up to commercial production. It is found that the average crystallite size can be easily controlled by adjusting the ratio between isopropanol and water in the solvent, whereas the crystallinity is mainly controlled by the reaction temperature. As-prepared Fe-doped TiO2 nanoparticles appear to be single phase, but Fe3+ ions most likely do not occupy the Ti4+ sites in the anatase TiO2 crystal structure.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Fujishima, A., Rao, T.N., and Tryk, D.A.: Titanium dioxide photocatalysis. J. Photochem. Photobiol., C 1, 1 (2000).
2.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
3.O’Regan, B. and Grätzel, M.: A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
4.Crätzel, M.: Photoelectrochemical cells. Nature 414, 338 (2001).
5.Grätzel, M.: Conversion of sunlight to electric power by nanocrystalline dye-sensitized solar cells. J. Photochem. Photobiol., A 164, 3 (2004).
6.Grätzel, M.: Solar energy conversion by dye-sensitized photovoltaic cells. Inorg. Chem. 44, 6841 (2005).
7.Chen, D., Huang, F., Cheng, Y.B., and Caruso, R.A.: Mesoporous anatase TiO2 beads with high surface areas and controllable pore sizes: A superior candidate for high-performance dye-sensitized solar cells. Adv. Mater. 21, 2206 (2009).
8.Li, G., Li, L., Boerio-Goates, J., and Woodfield, B.F.: High purity anatase TiO2 nanocrystals: Near room-temperature synthesis, grain growth kinetics, and surface hydration chemistry. J. Am. Chem. Soc. 127, 8659 (2005).
9.Vorontsov, A.V., Altynnikov, A.A., Savinov, E.N., and Kurkin, E.N.: Correlation of TiO2 photocatalytic activity and diffuse reflectance spectra. J. Photochem. Photobiol., A 144, 193 (2001).
10.Pettibone, J.M., Cwiertny, D.M., Scherer, M., and Grassian, V.H.: Adsorption of organic acids on TiO2 nanoparticles: Effects of pH, nanoparticle size, and nanoparticle aggregation. Langmuir 24, 6659 (2008).
11.Jang, H.D., Kim, S.K., and Kim, S.J.: Effect of particle size and phase composition of titanium dioxide nanoparticles on the photocatalytic properties. J. Nanopart. Res. 3, 141 (2001).
12.Chou, T.P., Zhang, Q., Russo, B., Fryxell, G.E., and Cao, G.: Titania particle size effect on the overall performance of dye-sensitized solar cells. J. Phys. Chem. C 111, 6296 (2007).
13.Simonsen, M.E., Jensen, H., Li, Z.S., and Søgaard, E.G.: Surface properties and photocatalytic activity of nanocrystalline titania films. J. Photochem. Photobiol., A 200, 192 (2008).
14.Li, C., Luo, Y., Li, D., Mi, J.L., , L., Hald, P., Meng, Q., and Iversen, B.B.: Performance enhanced dye-sensitized solar cells based on anatase TiO2 nanoparticles synthesized using a rapid, green and scalable supercritical fluid process. Cryst. Eng. Comm. (2012, submitted).
15.Fan, Y., Chen, G., Li, D., Luo, Y., Lock, N., Jensen, A.P., Mamakhel, A., Mi, J., Iversen, S.B., Meng, Q., and Iversen, B.B.: Highly selective deethylation of Rhodamine B on TiO2 prepared in supercritical fluids. Int. J. Photoenergy 2012, 173865 (2012).
16.Jagadale, T.C., Takale, S.P., Sonawane, R.S., Joshi, H.M., Patil, S.I., Kale, B.B., and Ogale, S.B.: N-doped TiO2 nanoparticle based visible light photocatalyst by modified peroxide sol−gel method. J. Phys. Chem. C 112, 14595 (2008).
17.Khan, M.A., Akhtar, M.S., and Yang, O.B.: Synthesis, characterization and application of sol–gel derived mesoporous TiO2 nanoparticles for dye-sensitized solar cells. Sol. Energy 84, 2195 (2010).
18.Sauvage, F., Chen, D., Comte, P., Huang, F., Heiniger, L.P., Cheng, Y.B., Caruso, R.A., and Graetzel, M.: Dye-sensitized solar cells employing a single film of mesoporous TiO2 beads achieve power conversion efficiencies over 10%. ACS Nano 4, 4420 (2010).
19.Mor, G.K., Varghese, O.K., Paulose, M., Shankar, K., and Grimes, C.A.: A review on highly ordered, vertically oriented TiO2 nanotube arrays: Fabrication, material properties, and solar energy applications. Sol. Energy Mater. Sol. Cells 90, 2011 (2006).
20.Chin, S., Park, E., Kim, M., Bae, G.N., and Jurng, J.: Synthesis and photocatalytic activity of TiO2 nanoparticles prepared by chemical vapor condensation method with different precursor concentration and residence time. J. Colloid Interface Sci. 362, 470 (2011).
21.Wahi, R.K., Liu, Y., Falkner, J.C., and Colvin, V.L.: Solvothermal synthesis and characterization of anatase TiO2 nanocrystals with ultrahigh surface area. J. Colloid Interface Sci. 302, 530 (2006).
22.Kartini, I., Menzies, D., Blake, D., da Costa, J.C.D., Meredith, P., Riches, J.D., and Lu, G.Q.: Hydrothermal seeded synthesis of mesoporous titania for application in dye-sensitized solar cells (DSSCs). J. Mater. Chem. 14, 2917 (2004).
23.Adschiri, T., Kanazawa, K., and Arai, K.: Rapid and continuous hydrothermal crystallization of metal oxide particles in supercritical water. J. Am. Ceram. Soc. 75, 1019 (1992).
24.Hald, P., Becker, J., Bremholm, M., Pedersen, J.S., Chevallier, J., Iversen, S.B., and Iversen, B.B.: Supercritical propanol–water synthesis and comprehensive size characterization of highly crystalline anatase TiO2 nanoparticles. J. Solid State Chem. 179, 2674 (2006).
25.Lock, N., Hald, P., Christensen, M., Birkedal, H., and Iversen, B.B.: Continuous flow supercritical water synthesis and crystallographic characterization of anisotropic boehmite nanoparticles. J. Appl. Cryst. 43, 858 (2010).
26.Becker, J., Hald, P., Bremholm, M., Pedersen, J.S., Chevallier, J., Iversen, S.B., and Iversen, B.B.: Critical size of crystalline ZrO2 nanoparticles synthesized in near- and supercritical water and supercritical isopropyl alcohol. ACS Nano 2, 1058 (2008).
27.Kawasaki, S., Xiuyi, Y., Sue, K., Hakuta, Y., Suzuki, A., and Arai, K.: Continuous supercritical hydrothermal synthesis of controlled size and highly crystalline anatase TiO2 nanoparticles. J. Supercrit. Fluids 50, 276 (2009).
28.Toft, L.L., Aarup, D.F., Bremholm, M., Hald, P., and Iversen, B.B.: Comparison of T-piece and concentric mixing systems for continuous flow synthesis of anatase nanoparticles in supercritical isopropanol/water. J. Solid State Chem. 182, 491 (2009).
29.Choi, J., Park, H., and Hoffmann, M.R.: Effects of single metal-ion doping on the visible-light photoreactivity of TiO2. J. Phys. Chem. C 114, 783 (2010).
30.Wang, C.Y., Bahnemann, D.W., and Dohrmann, J.K.: A novel preparation of iron-doped TiO2 nanoparticles with enhanced photocatalytic activity. Chem. Commun. 1539 (2000).
31.Jeong, E.D., Borse, P.H., Jang, J.S., Lee, J.S., Jung, O-S., Chang, H., Jin, J.S., Won, M.S., and Kim, H.G.: Hydrothermal synthesis of Cr and Fe codoped TiO2 nanoparticle photocatalyst. J. Ceram. Process. Res. 9, 250 (2008).
32.Luu, C.L., Nguyen, Q.T., and Ho, S.T.: Synthesis and characterization of Fe-doped TiO2 photocatalyst by the sol-gel method. Adv. Nat. Sci.: Nanosci. Nanotechnol. 1, 015008 (2010).
33.Naeem, K. and Ouyang, F.: Preparation of Fe3+-doped TiO2 nanoparticles and its photocatalytic activity under UV light. Physica B 405, 221 (2010).
34.Mi, J.L., Jensen, T.N., Hald, P., Overgaard, J., Christensen, M., and Iversen, B.B.: Glucose-assisted continuous flow synthesis of Bi2Te3 nanoparticles in supercritical/near-critical water. J. Supercrit. Fluids 67, 84 (2012).
35.Valencia, S., Marín, J.M., and Restrepo, G.: Study of the band gap of synthesized titanium dioxide nanoparticles using the sol-gel method and a hydrothermal treatment. The open Materials Science Journal 4, 9 (2010).
36.López, R. and Gómez, R.: Band-gap energy estimation from diffuse reflectance measurements on sol–gel and commercial TiO2: A comparative study. J. Sol-Gel Sci. Technol. 61, 1 (2012).


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed