Skip to main content Accessibility help
×
Home

Highly conductive ink made of silver nanopolyhedrons through an ecofriendly solution process

  • Hua Zheng (a1), Junxuan Yuan (a1), Lei Wang (a1), Junbiao Peng (a1), Yong Cao (a1), Hai-Bo Chen (a2), Jian Wang (a3) and Jian Pei (a4)...

Abstract

An ecofriendly process has been successfully developed to synthesize the polycrystalline silver nanopolyhedrons with a high yield at large scale. By using tannic acid in the presence of poly (vinyl pyrrolidone) (PVP), high quality silver nanopolyhedrons were obtained in an aqueous one-pot reaction without any templates or auxiliaries. The film made from the silver nanostructures exhibits an electrical conductivity higher than 104 S/cm on both rigid and flexible substrates. The supreme mechanical strength of this silver film recommends its wide application in printing and flexible electronics.

Copyright

Corresponding author

b)Address all correspondence to these authors: e-mail: jianwang@scut.edu.cn

Footnotes

Hide All

The purpose of this Materials Communications section is to provide accelerated publication of important new results in the fields regularly covered by Journal of Materials Research. Materials Communications cannot exceed four printed pages in length, including space allowed for title, figures, tables, references, and an abstract limited to about 100 words.

a)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Crawford, G.P.: Flexible flat panel display technology, in Flexible Flat Panel Display, edited by Crawford, G.P. (John Wiley & Sons, West Sussex, UK, 2005).
2.Sirringhaus, H., Sele, C.W., von Werne, T., and Ramsdale, C.: Manufacturing of organic transistor circuits by solution-based printing, in Organic Electronics: Materials, Manufacturing, and Applications, edited by Klauk, H. (Wiley-VCH, Weinheim, Germany, 2006).
3.Li, Y., Wu, Y., and Ong, B.S.: A simple and efficient approach to a printable silver conductor for printed electronics. J. Am. Chem. Soc. 129, 1862 (2007).
4.Zheng, J., Ding, Y., Tian, B., Wang, Z.L., and Zhuang, X.: Luminescent and Raman active silver nanoparticles with polycrystalline structure. J. Am. Chem. Soc. 130, 10472 (2008).
5.Liu, L., Wei, T., Guan, X., Zi, X., He, H., and Dai, H.: Size and morphology adjustment of PVP-stabilized silver and gold nanocrystals synthesized by hydrodynamic assisted self-assembly. J. Phys. Chem. C 113, 8595 (2009).
6.Menard, E., Meitl, M.A., Sun, Y.G., Park, J.U., Shir, D.J.L., Nam, Y.S., Jeon, S., and Rogers, J.A.: Micro- and nanopatterning techniques for organic electronic and optoelectronic systems. Chem. Rev. 107, 1117 (2007).
7.Tate, J., Rogers, J.A., Jones, C.D.W., Vyas, B., Murphy, D.W., Li, W.J., Bao, Z.A., Slusher, R.E., Dodabalapur, A., and Katz, H.E.: Anodization and microcontact printing on electroless silver: Solution-based fabrication procedures for low-voltage electronic systems with organic active components. Langmuir 16, 6054 (2000).
8.Cui, S.Q., Liu, Y.C., Yang, Z.S., and Wei, X.W.: Construction of silver nanowires on DNA template by an electrochemical technique. Mater. Des. 28, 722 (2007).
9.Pietrobon, B. and Kitaev, V.: Photochemical synthesis of monodisperse size-controlled silver decahedral nanoparticles and their remarkable optical properties. Chem. Mater. 20, 5186 (2008).
10.Kundu, S., Wang, K., and Liang, H.: Size-controlled synthesis and self-assembly of silver nanoparticles within a minute using microwave irradiation. J. Phys. Chem. C 113, 134 (2009).
11.Setua, P., Chakraborty, A., Seth, D., Bhatta, M.U., Satyam, P.V., and Sarkar, N.: Synthesis, optical properties, and surface enhanced Raman scattering of silver nanoparticles in nonaqueous methanol reverse micelles. J. Phys. Chem. C 111, 3901 (2007).
12.Nooney, R.I., Stranik, O., McDonagh, C., and MacCraith, B.D.: Optimization of plasmonic enhancement of fluorescence on plastic substrates. Langmuir 24, 11261 (2008).
13.Hu, B., Wang, S.B., Wang, K., Zhang, M., and Yu, S.H.: Microwave-assisted rapid facile “green” synthesis of uniform silver nanoparticles: Self-assembly into multilayered films and their optical properties. J. Phys. Chem. C 112, 11169 (2008).
14.Buffat, P. and Borel, J.P.: Size effect on the melting temperature of gold particles. Phys. Rev. A 13, 2287 (1976).
15.Wu, Y.L., Li, Y.N., and Ong, B.S.: Printed silver ohmic contacts for high-mobility organic thin-film transistors. J. Am. Chem. Soc. 128, 4202 (2006).

Keywords

Type Description Title
UNKNOWN
Supplementary materials

Zheng et al. supplementary material
Supplementary figure 1

 Unknown (99 KB)
99 KB
UNKNOWN
Supplementary materials

Zheng et al. supplementary material
Supplementary figure 2

 Unknown (332 KB)
332 KB
UNKNOWN
Supplementary materials

Zheng et al. supplementary material
Supplementary figure 3

 Unknown (109 KB)
109 KB
UNKNOWN
Supplementary materials

Zheng et al. supplementary material
Supplementary figure 4

 Unknown (388 KB)
388 KB
UNKNOWN
Supplementary materials

Zheng et al. supplementary material
Supplementary figure 5

 Unknown (1.6 MB)
1.6 MB

Highly conductive ink made of silver nanopolyhedrons through an ecofriendly solution process

  • Hua Zheng (a1), Junxuan Yuan (a1), Lei Wang (a1), Junbiao Peng (a1), Yong Cao (a1), Hai-Bo Chen (a2), Jian Wang (a3) and Jian Pei (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed