Skip to main content Accessibility help

High capacity and rate capability of S/3D ordered bimodal mesoporous carbon cathode for lithium/sulfur batteries

  • Yan Song (a1), Jun Ren (a1), Guoyan Wu (a1), Wulin Zhang (a1), Chengwei Zhang (a1) and Fuxing Yin (a1)...


3D ordered bimodal mesoporous carbon (OBMC) with a high specific surface area of 1368.7 m2/g, ordered large mesopores, and small mesopores on the walls is prepared by a surfactant-free rapid method using SiO2 nanosphere arrays as templates. The resulting OBMC is then composited with sulfur to prepare S/OBMC hybrids via a simple solution infiltration method followed by a heat treatment process. In S/OBMC composite, sulfur is uniformly infiltrated inside the 3D hierarchical pores of OBMC. On the basis of this systematic design, the obtained S/OBMC cathode shows a large discharge capacity value of 1590 mA h/g at first cycle and maintains 989 mA h/g after 100 cycles at 0.2 C. Furthermore, at 1 C charge–discharge rate, a reversible discharge capacity of 733 mA h/g after 100 cycles is reached. The extraordinary electrochemical property of S/OBMC derives from the unique bimodal mesoporous structure with large mesopores and small mesopores that can facilitate the mass transfer and strict dissolution of polysulfide species into the electrolyte.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Ji, X. and Nazar, L.F.: Advances in Li–S batteries. J. Mater. Chem. 20, 9821 (2010).
2.Arumugam, M., Yongzhu, F., and Yu-Sheng, S.: Challenges and prospects of lithium–sulfur batteries. Acc. Chem. Res. 46, 1125 (2013).
3.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon–sulphur cathode for lithium–sulphur batteries. Nat. Mater. 8, 500 (2009).
4.Hassoun, J. and Scrosati, B.: Moving to a solid-state configuration: A valid approach to making lithium–sulfur batteries viable for practical applications. Adv. Mater. 22, 5198 (2010).
5.Vishnuvardhan, T.K., Kulkarni, V.R., Basavaraja, C., and Raghavendra, S.C.: Synthesis, characterization and a.c. conductivity of polypyrrole/Y2O3 composites. Bull. Mater. Sci. 29, 77 (2006).
6.Zhang, Y., Bakenov, Z., Zhao, Y., Konarov, A., Doan, T.N.L., Malik, M., Paron, T., and Chen, P.: One-step synthesis of branched sulfur/polypyrrole nanocomposite cathode for lithium rechargeable batteries. J. Power Sources 208, 1 (2012).
7.Xu, G.L., Xu, Y.F., Fang, J.C., Peng, X.X., Fu, F., Huang, L., Li, J.T., and Sun, S.G.: Porous graphitic carbon loading ultra high sulfur as high-performance cathode of rechargeable lithium–sulfur batteries. ACS Appl. Mater. Interfaces 5, 10782 (2013).
8.Zhang, C., Zhang, Z., Wang, D., Yin, F., and Zhang, Y.: Three-dimensionally ordered macro-/mesoporous carbon loading sulfur as high-performance cathodes for lithium/sulfur batteries. J. Alloys Compd. 714, 126 (2017).
9.Li, X., Tang, R., Hu, K., Zhang, L., and Ding, Z.: Hierarchical porous carbon aerogels with VN modification as cathode matrix for high performance lithium-sulfur batteries. Electrochim. Acta 210, 734 (2016).
10.Guo, J., Xu, Y., and Wang, C.: Sulfur-impregnated disordered carbon nanotubes cathode for lithium–sulfur batteries. Nano Lett. 11, 4288 (2011).
11.Duan, X., Han, Y., Huang, L., Li, Y., and Chen, Y.: Improved rate ability of low cost sulfur cathodes by using ultrathin graphite sheets with self-wrapped function as cheap conductive agent. J. Mater. Chem. A 3, 8015 (2015).
12.Zuo, P., Zhang, W., Hua, J., Ma, Y., Du, C., Cheng, X., Gao, Y., and Yin, G.: A novel one-dimensional reduced graphene oxide/sulfur nanoscroll material and its application in lithium sulfur batteries. Electrochim. Acta 222, 1861 (2016).
13.Zhang, Y., Zhao, Y., Bakenov, Z., Tuiyebayeva, M., Konarov, A., and Chen, P.: Synthesis of hierarchical porous sulfur/polypyrrole/multiwalled carbon nanotube composite cathode for lithium batteries. Electrochim. Acta 143, 49 (2014).
14.Cai, T., Zhou, M., Han, G., and Guan, S.: Phenol–formaldehyde carbon with ordered/disordered bimodal mesoporous structure as high-performance electrode materials for supercapacitors. J. Power Sources 241, 6 (2013).
15.Li, N., Zheng, M., Feng, S., Lu, H., Zhao, B., Zheng, J., Zhang, S., Ji, G., and Cao, J.: Fabrication of hierarchical macroporous/mesoporous carbons via the dual-template method and the restriction effect of hard template on shrinkage of mesoporous polymers. J. Phys. Chem. C 117, 8784 (2013).
16.Zhang, C., Xu, L., Shan, N., Sun, T., Chen, J., and Yan, Y.: Enhanced electrocatalytic activity and durability of Pt particles supported on ordered mesoporous carbon spheres. ACS Catal. 4, 1926 (2014).
17.Wen, X.: Three-dimensional hierarchical porous carbon with a bimodal pore arrangement for capacitive deionization. J. Mater. Chem. 22, 23835 (2012).
18.Zhang, C., Zhang, Z., Yin, F., Zhang, Y., Mentbayeva, A., Babaa, M-R., Molkenova, A., and Bakenov, Z.: Three-dimensionally ordered macroporous carbon encapsulated ZnO nanoparticles as high-performance anode for lithium-ion batteries. ChemElectroChem 4, 2125 (2017).
19.Tian-Yi, M., Lei, L., and Zhong-Yong, Y.: Direct synthesis of ordered mesoporous carbons. Chem. Soc. Rev. 42, 3977 (2012).
20.He, G., Ji, X., and Nazar, L.: High “C” rate Li–S cathodes: Sulfur imbibed bimodal porous carbons. Energy Environ. Sci. 4, 2878 (2011).
21.Dutta, S., Wu, K.C.W., and Kimura, T.: Predictable shrinkage during the precise design of porous materials and nanomaterials. Chem. Mater. 27, 6918 (2015).
22.Qiao, W.M., Song, Y., Hong, S.H., Lim, S.Y., Yoon, S.H., Korai, Y., and Mochida, I.: Development of mesophase pitch derived mesoporous carbons through a commercially nanosized template. Langmuir 22, 3791 (2006).
23.Tang, Z., Song, Y., Tian, Y., Liu, L., and Guo, Q.: Pore development of thermosetting phenol resin derived mesoporous carbon through a commercially nanosized template. Mater. Sci. Eng., A 473, 153 (2008).
24.Wei, F., Snyder, M.A., Sandeep, K., Pyung-Soo, L., Won Cheol, Y., Mccormick, A.V., Penn, R.L., Andreas, S., and Michael, T.: Hierarchical nanofabrication of microporous crystals with ordered mesoporosity. Nat.Mater. 7, 984 (2008).
25.Li, Y., Wang, L., Gao, B., Li, X., Cai, Q., Li, Q., Peng, X., Huo, K., and Chu, P.K.: Hierarchical porous carbon materials derived from self-template bamboo leaves for lithium–sulfur batteries. Electrochim. Acta 229, 352 (2017).
26.Zhang, Y., Hu, G., O’Hare, D., Wu, D., and Sun, Y.: Partially graphitized carbon filaments from as-synthesized silica/surfactant composite. Carbon 44, 1969 (2006).
27.Yang, D., Ni, W., Cheng, J., Wang, Z., Wang, T., Guan, Q., Zhang, Y., Wu, H., Li, X., and Wang, B.: Flexible three-dimensional electrodes of hollow carbon bead strings as graded sulfur reservoirs and the synergistic mechanism for lithium–sulfur batteries. Appl. Surf. Sci. 413, 209 (2017).
28.See, K.A., Jun, Y.S., Gerbec, J.A., Sprafke, J.K., Wudl, F., Stucky, G.D., and Seshadri, R.: Sulfur-functionalized mesoporous carbons as sulfur hosts in Li–S batteries: Increasing the affinity of polysulfide intermediates to enhance performance. ACS Appl. Mater. Interfaces 6, 10908 (2014).
29.Scrosati, B., Hassoun, J., and Sun, Y.K.: Lithium-ion batteries. A look into the future. Energy Environ. Sci. 4, 3287 (2011).
30.Yang, Y., Yu, G., Cha, J.J., Wu, H., Vosgueritchian, M., Yao, Y., Bao, Z., and Cui, Y.: Improving the performance of lithium-sulfur batteries by conductive polymer coating. ACS Nano 5, 9187 (2011).
31.Pongilat, R., Franger, S., and Nallathamby, K.: Functionalized carbon as polysulfide traps for advanced lithium–sulfur batteries. J. Phys. Chem. C 122, 5948 (2018).
32.Zhu, F.L., Yang, Z., Zhao, J.P., and Zhao, X.: Microwave assisted preparation of expanded graphite/sulfur composites as cathodes for Li–S batteries. New Carbon Mater. 31, 199 (2016).
33.Benítez, A., González-Tejero, M., Caballero, Á., and Morales, J.: Almond shell as a microporous carbon source for sustainable cathodes in lithium–sulfur batteries. Materials 11, 1428 (2018).
34.Guo, Y., Wu, H., Zhang, Y., Xiang, M., Zhao, G., Liu, H., and Zhang, Y.: Vesicle-like sulfur/reduced graphene oxide composites for high performance lithium-sulfur batteries. J. Alloys Compd. 724, 1007 (2017).
35.Wang, X., Zhang, Z., Qu, Y., Lai, Y., and Li, J.: Nitrogen-doped graphene/sulfur composite as cathode material for high capacity lithium–sulfur batteries. J. Power Sources 256, 361 (2014).
36.Lee, J.S. and Manthiram, A.: Hydroxylated N-doped carbon nanotube–sulfur composites as cathodes for high-performance lithium–sulfur batteries. J. Power Sources 343, 54 (2017).
37.Tang, J., Yang, J., and Zhou, X.: Acetylene black derived hollow carbon nanostructure and its application in lithium–sulfur batteries. RSC Adv. 3, 16936 (2013).
38.Xie, Y., Fang, L., Cheng, H., Hu, C., Zhao, H., Xu, J., Fang, J., Lu, X., and Zhang, J.: Biological cell derived N-doped hollow porous carbon microspheres for lithium–sulfur batteries. J. Mater. Chem. A 4, 15612 (2016).
39.Snyder, M.A., Alex, L.J., Davis, T.M., Scriven, L.E., and Michael, T.: Silica nanoparticle crystals and ordered coatings using lys-sil and a novel coating device. Langmuir 23, 9924 (2007).
40.Yan, M., Dong, G., Fuqiang, Z., Yifeng, S., Haifeng, Y., Zheng, L., Chengzhong, Y., Bo, T., and Dongyuan, Z.: Ordered mesoporous polymers and homologous carbon frameworks: Amphiphilic surfactant templating and direct transformation. Angew. Chem., Int. Ed. 44, 7053 (2005).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed