Skip to main content Accessibility help

Hierarchically structured carbon nanomaterials for electrochemical energy storage applications

  • Yanyan Wang (a1), Zhijie Wang (a1), Xiaoliang Yu (a2), Baohua Li (a1), Feiyu Kang (a1) and Yan-Bing He (a1)...


Structural hierarchy is ubiquitous in nature and quite important for optimizing the properties of functional materials. Carbon nanomaterials, owing to their unique and tunable physical and chemical properties, have been regarded as promising candidates for various energy storage systems. Constructing hierarchically structured carbon nanomaterials (HSCNs) can boost electrochemical performance of nanocarbons. Therefore, HSCNs have attracted tremendous research attentions in recent years. In this review, we summarized the recent progress in hierarchical structure design of carbon nanomaterials and their potential applications in different energy storage technologies. First we give a brief introduction about carbon nanomaterials and the hierarchical structure merits. Subsequently, recent research works on hierarchical structure design of carbon nanomaterials was summarized and classified according to applications in lithium-ion batteries, sodium-ion batteries, supercapacitors and lithium–sulfur batteries, respectively. In addition, the challenges of HSCNs in different applications were also concluded and reviewed. At last, design principles of HSCNs were summarized and future development trends were prospected.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All

These authors contributed equally to this work.

Contributing Editor: Tianyu Liu



Hide All
1.Dai, L., Chang, D.W., Baek, J.B., and Lu, W.: Carbon nanomaterials for advanced energy conversion and storage. Small 8(8), 1130 (2012).
2.Su, D. and Schlögl, R.: Nanostructured carbon and carbon nanocomposites for electrochemical energy storage applications. ChemSusChem 3(2), 136 (2010).
3.Candelaria, S.L., Shao, Y., Zhou, W., Li, X., Xiao, J., Zhang, J., Wang, Y., Liu, J., Li, J., and Cao, G.: Nanostructured carbon for energy storage and conversion. Nano Energy 1(2), 195 (2012).
4.Zheng, X., Luo, J., Lv, W., Wang, D-W., and Yang, Q-H.: Two-dimensional porous carbon: Synthesis and ion transport properties. Adv. Mater. 27(36), 5388 (2015).
5.Kroto, H.W., Heath, J.R., O’Brien, S.C., F Curl, R., and Smalley, R.E.: C60: Buckminsterfullerene. Nature 318(162), 163 (1985).
6.Iijima, S. and Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature 363(6430), 603 (1993).
7.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306(5696), 666 (2004).
8.Yu, X., Wang, J., Huang, Z-H., Shen, W., and Kang, F.: Ordered mesoporous carbon nanospheres as electrode materials for high-performance supercapacitors. Electrochem. Commun. 36, 66 (2013).
9.Zhang, L., Aboagye, A., Kelkar, A., Lai, C., and Fong, H.: A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 49(2), 463 (2014).
10.Yu, X., Zhao, J., Lv, R., Liang, Q., Zhan, C., Bai, Y., Huang, Z-H., Shen, W., and Kang, F.: Facile synthesis of nitrogen-doped carbon nanosheets with hierarchical porosity for high performance supercapacitors and lithium–sulfur batteries. J. Mater. Chem. A 3(36), 18400 (2015).
11.Dutta, S., Bhaumik, A., and Wu, K.C-W.: Hierarchically porous carbon derived from polymers and biomass: Effect of interconnected pores on energy applications. Energy Environ. Sci. 7(11), 3574 (2014).
12.Xu, Q., Yu, X., Liang, Q., Bai, Y., Huang, Z-H., and Kang, F.: Nitrogen-doped hollow activated carbon nanofibers as high performance supercapacitor electrodes. J. Electroanal. Chem. 739, 84 (2015).
13.Paraknowitsch, J.P. and Thomas, A.: Doping carbons beyond nitrogen: An overview of advanced heteroatom doped carbons with boron, sulphur and phosphorus for energy applications. Energy Environ. Sci. 6(10), 2839 (2013).
14.Zhao, Y., Hu, C., Hu, Y., Cheng, H., Shi, G., and Qu, L.: A versatile, ultralight, nitrogen-doped graphene framework. Angew. Chem., Int. Ed. 124(45), 11533 (2012).
15.Wang, J., Xin, H.L., and Wang, D.: Recent progress on mesoporous carbon materials for advanced energy conversion and storage. Part. Part. Syst. Charact. 31(5), 515 (2014).
16.Rao, C.N.R., Biswas, K., Subrahmanyam, K.S., and Govindaraj, A.: Graphene, the new nanocarbon. J. Mater. Chem. 19(17), 2457 (2009).
17.Avouris, P.: Graphene: Electronic and photonic properties and devices. Nano Lett. 10(11), 4285 (2010).
18.Akhavan, O., Ghaderi, E., Aghayee, S., Fereydooni, Y., and Talebi, A.: The use of a glucose-reduced graphene oxide suspension for photothermal cancer therapy. J. Mater. Chem. 22(27), 13773 (2012).
19.Kim, J.H., Chang, W.S., Kim, D., Yang, J.R., Han, J.T., Lee, G.W., Kim, J.T., and Seol, S.K.: 3d printing of reduced graphene oxide nanowires. Adv. Mater. 27(1), 157 (2015).
20.Lin, Z., Zeng, Z., Gui, X., Tang, Z., Zou, M., and Cao, A.: Carbon nanotube sponges, aerogels, and hierarchical composites: Synthesis, properties, and energy applications. Adv. Energy Mater. 6(17), 1600554 (2016).
21.Ravi, S. and Vadukumpully, S.: Sustainable carbon nanomaterials: Recent advances and its applications in energy and environmental remediation. J. Environ. Chem. Eng. 4(1), 835 (2016).
22.Liu, T., Zhang, F., Song, Y., and Li, Y.: Revitalizing carbon supercapacitor electrodes with hierarchical porous structures. J. Mater. Chem. A 5(34), 1770517733 (2017).
23.Xin, S., Guo, Y.G., and Wan, L.J.: Nanocarbon networks for advanced rechargeable lithium batteries. Acc. Chem. Res. 45(10), 1759 (2012).
24.Wenzel, S., Hara, T., Janek, J., and Adelhelm, P.: Room-temperature sodium-ion batteries: Improving the rate capability of carbon anode materials by templating strategies. Energy Environ. Sci. 4(9), 3342 (2011).
25.Ji, X., Lee, K.T., and Nazar, L.F.: A highly ordered nanostructured carbon-sulphur cathode for lithium-sulphur batteries. Nat. Mater. 8(6), 500 (2009).
26.Zhu, Y., Murali, S., Cai, W., Li, X., Suk, J.W., Potts, J.R., and Ruoff, R.S.: Graphene and graphene oxide: Synthesis, properties, and applications. Adv. Mater. 22(35), 3906 (2010).
27.Wu, Q., Yang, L., Wang, X., and Hu, Z.: From carbon-based nanotubes to nanocages for advanced energy conversion and storage. Acc. Chem. Res. 50(2), 435 (2017).
28.Zheng, Z., Zhang, X., Pei, F., Dai, Y., Fang, X., Wang, T., and Zheng, N.: Hierarchical porous carbon microrods composed of vertically aligned graphene-like nanosheets for Li-ion batteries. J. Mater. Chem. A 3(39), 19800 (2015).
29.Zhao, M.Q., Zhang, Q., Huang, J.Q., Tian, G.L., Nie, J.Q., Peng, H.J., and Wei, F.: Unstacked double-layer templated graphene for high-rate lithium-sulphur batteries. Nat. Commun. 5, 3410 (2014).
30.Doughty, D.H. and Roth, E.P.: A general discussion of Li ion battery safety. Electrochem. Soc. Interface 21(2), 37 (2012).
31.Xie, Z., He, Z., Feng, X., Xu, W., Cui, X., Zhang, J., Yan, C., Carreon, M.A., Liu, Z., and Wang, Y.: Hierarchical sandwich-like structure of ultrafine N-rich porous carbon nanospheres grown on graphene sheets as superior lithium-ion battery anodes. ACS Appl. Mater. Interfaces 8(16), 10324 (2016).
32.Dong, Y., Yu, M., Wang, Z., Liu, Y., Wang, X., Zhao, Z., and Qiu, J.: A top-down strategy toward 3d carbon nanosheet frameworks decorated with hollow nanostructures for superior lithium storage. Adv. Funct. Mater. 26(42), 7590 (2016).
33.Yen, H-J., Tsai, H., Zhou, M., Holby, E.F., Choudhury, S., Chen, A., Adamska, L., Tretiak, S., Sanchez, T., Iyer, S., Zhang, H., Zhu, L., Lin, H., Dai, L., Wu, G., and Wang, H-L.: Structurally defined 3D nanographene assemblies via bottom-up chemical synthesis for highly effcient lithium storage. Adv. Mater. 28(46), 10250 (2016).
34.Chen, Y., Li, X., Park, K., Song, J., Hong, J., Zhou, L., Mai, Y., Huang, H., and Goodenough, J.B.: Hollow carbon-nanotube/carbon-nanofiber hybrid anodes for Li-ion batteries. J. Am. Chem. Soc. 135(44), 16280 (2013).
35.Fang, Y., Lv, Y., Che, R., Wu, H., Zhang, X., Gu, D., Zheng, G., and Zhao, D.: Two-dimensional mesoporous carbon nanosheets and their derived graphene nanosheets: Synthesis and efficient lithium ion storage. J. Am. Chem. Soc. 135(4), 1524 (2013).
36.Wang, Z., Yu, X., He, W., Kaneti, Y.V., Han, D., Sun, Q., He, Y., and Xiang, B.: Construction of a unique two-dimensional hierarchical carbon architecture for superior lithium-ion storage. ACS Appl. Mater. Interfaces 49(49), 33399 (2016).
37.Yang, Y., Pang, R., Zhou, X., Zhang, Y., Wu, H., and Guo, S.: Composites of chemically-reduced graphene oxide sheets and carbon nanospheres with three-dimensional network structure as anode materials for lithium ion batteries. J. Mater. Chem. 22(43), 23194 (2012).
38.Ma, H., Jiang, H., Jin, Y., Dang, L., Lu, Q., and Gao, F.: Carbon nanocages@ultrathin carbon nanosheets: One-step facile synthesis and application as anode material for lithium-ion batteries. Carbon 105, 586 (2016).
39.Zuo, Z., Kim, T.Y., Kholmanov, I., Li, H., Chou, H., and Li, Y.: Ultra-light hierarchical graphene electrode for binder-free supercapacitors and lithium-ion battery anodes. Small 11(37), 4922 (2015).
40.Chen, L., Jin, X., Wen, Y., Lan, H., Yu, X., Sun, D., and Yi, T.: Intrinsically coupled 3d nGs@CNTs frameworks as anode materials for lithium-ion batteries. Chem. Mater. 27(21), 7289 (2015).
41.Xu, J., Wang, M., Wickramaratne, N.P., Jaroniec, M., Dou, S., and Dai, L.: High-performance sodium ion batteries based on a 3D anode from nitrogen-doped graphene foams. Adv. Mater. 27(12), 2042 (2015).
42.Yan, Y., Yin, Y., Guo, Y., and Wan, L.: A sandwich-like hierarchically porous carbon/graphene composite as a high-performance anode material for sodium-ion batteries. Adv. Energy Mater. 4(8), 1079 (2014).
43.Ding, J., Wang, H., Li, Z., Kohandehghan, A., Cui, K., Xu, Z., Zahiri, B., Tan, X., Lotfabad, E.M., Olsen, B.C., and Mitlin, D.: Carbon nanosheet frameworks derived from peat moss as high performance sodium ion battery anodes. ACS Nano 7(12), 11004 (2013).
44.Lyu, Z., Yang, L., Xu, D., Zhao, J., Lai, H., Jiang, Y., Wu, Q., Li, Y., Wang, X., and Hu, Z.: Hierarchical carbon nanocages as high-rate anodes for Li- and Na-ion batteries. Nano Res. 8(11), 3535 (2015).
45.Xu, D., Chen, C., Xie, J., Zhang, B., Miao, L., Cai, J., Huang, Y., and Zhang, L.: A hierarchical N/S-codoped carbon anode fabricated facilely from cellulose/polyaniline microspheres for high-performance sodium-ion batteries. Adv. Energy Mater. 6(6), 1501929 (2016).
46.Zhang, F., Yao, Y., Wan, J., Henderson, D., Zhang, X., and Hu, L.: High temperature carbonized grass as a high performance sodium ion battery anode. ACS Appl. Mater. Interfaces 9(1), 391 (2017).
47.Liu, T., Zhu, C., Kou, T., Worsley, M.A., Qian, F., Condes, C., Duoss, E.B., Spadaccini, C.M., and Li, Y.: Ion intercalation induced capacitance improvement for graphene based supercapacitor electrodes. ChemNanoMat 2(7), 635 (2016).
48.Zhang, F., Liu, T., Hou, G., Kou, T., Yue, L., Guan, R., and Li, Y.: Hierarchically porous carbon foams for electric double layer capacitors. Nano Res. 9(10), 2875 (2016).
49.Zhang, F., Liu, T., Li, M., Yu, M., Luo, Y., Tong, Y., and Li, Y.: Multiscale pore network boosts capacitance of carbon electrodes for ultrafast charging. Nano Lett. 17(5), 3097 (2017).
50.Chen, C., Zhang, Y., Li, Y., Dai, J., Song, J., Yao, Y., Gong, Y., Kierzewski, I., Xie, J., and Hu, L.: All-wood, low tortuosity, aqueous, biodegradable supercapacitors with ultra-high capacitance. Energy Environ. Sci. 10, 538 (2017).
51.Zhu, C., Liu, T., Qian, F., Han, T.Y., Duoss, E.B., D Kuntz, J., Spadaccini, C.M., Worsley, M.A., and Li, Y.: Supercapacitors based on three-dimensional hierarchical graphene aerogels with periodic macropores. Nano Lett. 16(6), 3448 (2016).
52.Huang, Z., Liu, T., Song, Y., Li, Y., and Liu, X.: Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 9, 13119 (2017).
53.Pandolfo, A.G. and Hollenkamp, A.F.: Carbon properties and their role in supercapacitors. J. Power Sources 157(1), 11 (2006).
54.Wang, D., Li, F., Liu, M., Lu, G., and Cheng, H.: 3D aperiodic hierarchical porous graphitic carbon material for high-rate electrochemical capacitive energy storage. Angew. Chem., Int. Ed. 47(2), 373 (2008).
55.Guo, C. and Li, C.: A self-assembled hierarchical nanostructure comprising carbon spheres and graphene nanosheets for enhanced supercapacitor performance. Energy Environ. Sci. 4(11), 4504 (2011).
56.Xu, Y., Lin, Z., Zhong, X., Huang, X., Weiss, N.O., Huang, Y., and Duan, X.: Holey graphene frameworks for highly efficient capacitive energy storage. Nat. Commun. 5, 4544 (2014).
57.Liang, Y., Chen, L., Zhuang, D., Liu, H., Fu, R., Zhang, M., Wu, D., and Matyjaszewski, K.: Fabrication and nanostructure control of super-hierarchical carbon materials from heterogeneous bottlebrushes. Chem. Sci. 8, 2101 (2017).
58.Yuan, Z., Peng, H., Huang, J., Liu, X., Wang, D., Cheng, X., and Zhang, Q.: Hierarchical free-standing carbon-nanotube paper electrodes with ultrahigh sulfur-loading for lithium–sulfur batteries. Adv. Funct. Mater. 24(39), 6244 (2015).
59.Deng, W., Hu, A., Chen, X., Zhang, S., Tang, Q., Liu, Z., Fan, B., and Xiao, K.: Sulfur-impregnated 3D hierarchical porous nitrogen-doped aligned carbon nanotubes as high-performance cathode for lithium–sulfur batteries. J. Power Sources 322, 138 (2016).
60.Zheng, Z., Guo, H., Pei, F., Zhang, X., Chen, X., Fang, X., Wang, T., and Zheng, N.: High sulfur loading in hierarchical porous carbon rods constructed by vertically oriented porous graphene-like nanosheets for Li–S batteries. Adv. Funct. Mater. 26(48), 8952 (2016).
61.Huang, J., Peng, H., Liu, X., Nie, J., Cheng, X., Zhang, Q., and Wei, F.: Flexible all-carbon interlinked nanoarchitectures as cathode scaffolds for high-rate lithium–sulfur batteries. J. Mater. Chem. A 2(28), 10869 (2014).
62.Kaneti, Y.V., Tang, J., Salunkhe, R.R., Jiang, X., Yu, A., Wu, K.C-W., and Yamauchi, Y.: Nanoarchitectured design of porous materials and nanocomposites from metal-organic frameworks. Adv. Mater. 29(12), 1604898 (2017).
63.Xu, F., Tang, Z., Huang, S., Chen, L., Liang, Y., Mai, W., Zhong, H., Fu, R., and Wu, D.: Facile synthesis of ultrahigh-surface-area hollow carbon nanospheres for enhanced adsorption and energy storage. Nat. Commun. 6, 7221 (2015).
64.Xu, F., Wu, D., Fu, R., and Wei, B.: Design and preparation of porous carbons from conjugated polymer precursors. Mater. Today 20, (2017). doi: 10.1016/j.mattod.2017.04.026.
65.Lin, X., Liang, Y., Lu, Z., Lou, H., Zhang, X., Liu, S., Zheng, B., Liu, R., Fu, R., and Wu, D.: Mechanochemistry: A green, activation-free and top-down strategy to high-surface-area carbon materials. ACS Sustainable Chem. Eng. 5(10), 8535 (2017).
66.Xu, F., Xu, J., Xu, H., Lu, Y., Yang, H., Tang, Z., Lu, Z., Fu, R., and Wu, D.: Fabrication of novel powdery carbon aerogels with high surface areas for superior energy storage. Energy Storage Mater. 7, 8 (2017).
67.Xu, G., Ding, B., Nie, P., Shen, L., Dou, H., and Zhang, X.: Hierarchically porous carbon encapsulating sulfur as a superior cathode material for high performance lithium–sulfur batteries. ACS Appl. Mater. Interfaces 6(1), 194 (2014).
68.Zheng, G., Yang, Y., Cha, J.J., Hong, S.S., and Cui, Y.: Hollow carbon nanofiber-encapsulated sulfur cathodes for high specific capacity rechargeable lithium batteries. Nano Lett. 11(10), 4462 (2011).
69.Lyu, Z., Xu, D., Yang, L., Che, R., Feng, R., Zhao, J., Li, Y., Wu, Q., Wang, X., and Hu, Z.: Hierarchical carbon nanocages confining high-loading sulfur for high-rate lithium–sulfur batteries. Nano Energy 12, 657 (2015).
70.Tang, Z., Liu, S., Lu, Z., Lin, X., Zheng, B., Liu, R., Wu, D., and Fu, R.: A simple self-assembly strategy for ultrahigh surface area nitrogen-doped porous carbon nanospheres with enhanced adsorption and energy storage performances. Chem. Commun. 53, 6764 (2017).


Related content

Powered by UNSILO

Hierarchically structured carbon nanomaterials for electrochemical energy storage applications

  • Yanyan Wang (a1), Zhijie Wang (a1), Xiaoliang Yu (a2), Baohua Li (a1), Feiyu Kang (a1) and Yan-Bing He (a1)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.