Skip to main content Accessibility help
×
Home

Hierarchical ZnO films with microplate/nanohole structures induced by precursor concentration and colloidal templates, their superhydrophobicity, and enhanced photocatalytic performance

  • Zhigang Li (a1), Guotao Duan (a2), Guangqiang Liu (a2), Zhengfei Dai (a2), Jinlian Hu (a3), Weiping Cai (a4) and Yue Li (a4)...

Abstract

A facile inexpensive route has been developed to prepare ZnO hierarchical materials with microplate/nanohole structures based on the colloidal monolayer template by the precursor thermal decomposition. These hierarchical structured materials demonstrated an excellent superhydrophobicity with self-cleaning effect and an enhanced photocatalytic performance to organic molecules, which are attributed to big roughness and large surface area of such special hierarchical structures. The formation mechanism of such hierarchical structures was investigated in detail by tracing morphology changing at different precursor concentrations. At high precursor concentration, both incompletely restricted ZnO growth of colloidal templates and preferable growth of microplates take place at the same time, and hence, ZnO hierarchical materials with microplate/nanohole structures are formed. With increasing precursor concentration, the number density of ZnO microplates tends to be larger. The large number density of ZnO microplates and holes on the microplates render the sample a large surface area and surface roughness, leading to good superhydrophobicity and photocatalytic activity. Such hierarchical ZnO micro/nanostructured materials have important applications in environmental science, microfluidic devices, etc.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: yueli@issp.ac.cn

References

Hide All
1. Yan, R., Gargas, D., and Yang, P.: Nanowire photonics. Nat. Photonics 3, 569 (2009).
2. Roduner, E.: Size matters: Why nanomaterials are different. Chem. Soc. Rev. 35, 583 (2006).
3. Cobley, C.M., Chen, J., Cho, E.C., Wang, L.V., and Xia, Y.: Gold nanostructures: A class of multifunctional materials for biomedical applications. Chem. Soc. Rev. 40, 44 (2011).
4. Wang, Z.L.: Towards self-powered nanosystems: From nanogenerators to nanopiezotronics. Adv. Funct. Mater. 18, 3553 (2008).
5. Varin, R.A., Zbroniec, L., Polanski, M., and Bystrzycki, J.: A review of recent advances on the effects of microstructural refinement and nano-catalytic additives on the hydrogen storage properties of metal and complex hydrides. Energies 4, 1 (2011).
6. Morariu, M., Voicu, N., Schäffer, E., Lin, Z., Russell, T.P., and Steiner, U.: Hierarchical structure formation and pattern replication induced by an electric field. Nat. Mater. 2, 48 (2003).
7. Dorozhkin, S.V.: A hierarchical structure for apatite crystals. J. Mater. Sci. - Mater. Med. 18, 363 (2007).
8. Duan, G., Cai, W., Luo, Y., Li, Y., and Lei, Y.: Hierarchical surface rough ordered Au particle arrays and their surface enhanced Raman scattering. Appl. Phys. Lett. 89, 181918 (2006).
9. Lao, J.Y., Wen, J.G., Wang, D.Z., and Ren, Z.F.: Hierarchical ZnO nanostructures. Nano. Lett. 2, 1287 (2002).
10. Gao, P.X., Ding, Y., and Wang, Z.L.: Crystallographic-orientation aligned ZnO nanorods grown by tin catalyst. Nano. Lett. 3, 1315 (2003).
11. Cho, S.O., Lee, E.J., Lee, H.M., Kim, J.G., and Kim, Y.J.: Controlled synthesis of abundantly branched, hierarchical nanotrees by electron irradiation of polymers. Adv. Mater. 18, 60 (2006).
12. Wang, L., Guo, S.J., and Dong, S.J.: Facile electrochemical route to directly fabricate hierarchical spherical cupreous micro structures: Toward superhydrophobic surface. Electrochem. Commun. 10, 655 (2008).
13. Wu, C., Lei, L., Zhu, X., Yang, J., and Xie, Y.: Large-Scale synthesis of titanate and anatase tubular hierarchitectures. Small Mol. 3, 1518 (2007).
14. Li, Y., Sasaki, T., Shimizu, Y., and Koshizaki, N.: Hexagonal-close-packed, hierarchical amorphous TiO2 nanocolumn arrays: Transferability, enhanced photocatalytic activity, and superamphiphilicity without UV irradiation. J. Am. Chem. Soc. 130, 14755 (2008).
15. Li, Y., Sasaki, T., Shimizu, Y., and Koshizaki, N.: A hierarchically ordered TiO2 hemispherical particle array with hexagonal-non-close-packed tops: Synthesis and stable superhydrophilicity without UV irradiation. Small Mol. 4, 2286 (2008).
16. Barthlott, W. and Neinhuis, C.: Purity of the sacred lotus, or escape from contamination in biological surfaces. Planta Med. 202, 1 (1997).
17. Sun, T.L., Feng, L., Gao, X.F., and Jiang, L.: Bioinspired surfaces with special wettability. Acc. Chem. Res. 38, 644 (2005).
18. Wang, S.T., Song, Y.L., and Jiang, L.: Photoresponsive surfaces with controllable wettability. J. Photochem. Photobiol., C 8, 18 (2007).
19. Li, X-M., Reinhoudt, D., and Crego-Calama, M.: What do we need for a superhydrophobic surface? A review on the recent progress in the preparation of superhydrophobic surfaces. Chem. Soc. Rev. 36, 1350 (2007).
20. Shirtcliffe, N.J., McHale, G., Atherton, S., and Newton, M.I.: Introduction to superhydrophobicity. Adv. Colloid Interface Sci. 161, 124 (2010).
21. Nakajima, A., Hashimoto, K., and Watanabe, T.: Recent studies on super-hydrophobic films. Monatsh. Chem. 132, 31 (2001).
22. Guo, Z., Liu, W., and Su, B-L.: Superhydrophobic surfaces: From natural to biomimetic to functional. J. Colloid Interface Sci. 353, 335 (2011).
23. Chen, W., Fadeev, A., Hsieh, M., Öner, D., Youngblood, J., and McCarthy, T.: Ultrahydrophobic and ultralyophobic surfaces: Some comments and examples. Langmuir 15, 3395 (1999).
24. Han, J.T., Kim, S.Y., Woo, J.S., and Lee, G-W.: Transparent, conductive, and superhydrophobic films from stabilized carbon nanotube/silane sol mixture solution. Adv. Mater. 20, 3724 (2008).
25. Lau, K.K.S., Bico, J., Teo, K.K.B., Chhowalla, M., Amaratunga, G.A.J., Milne, W.I., McKinley, G.H., and Gleason, K.K.: Superhydrophobic carbon nanotube forests. Nano. Lett. 3, 17011705 (2003).
26. Zhang, G., Wang, D.Y., Gu, Z-Z., and Möhwald, H.: Facile fabrication of super-hydrophobic surfaces from binary colloidal assembly. Langmuir 21, 9143 (2005).
27. Nakajima, A., Fujishima, A., Hashimoto, K., and Watanabe, T.: Superhydrophobic films from raspberry-like particles. Adv. Mater. 11, 1365 (1999).
28. Zhang, L., Zhou, Z., Cheng, B., DeSimone, J.M., and Samulski, E.T.: Superhydrophobic behavior of a perfluoropolyether lotus-leaf-like topography. Langmuir 22, 8576 (2006).
29. Xia, F., Feng, L., Wang, S., Sun, T., Song, W., Jiang, W., and Jiang, L.: Dual-responsive surfaces that switch between superhydrophilicity and superhydrophobicity. Adv. Mater. 18, 432 (2006).
30. Wang, S., Feng, L., and Jiang, L.: One-step solution-immersing process towards bionic superhydrophobic surfaces. Adv. Mater. 18, 767 (2006).
31. Lee, E.J., Lee, H.M., Li, Y., Hong, L.Y., Kim, D.P., and Cho, S.O.: Hierarchical pore structures fabricated by electron irradiation of silicone grease and their applications to superhydrophobic and superhydrophilic films. Macromol. Rapid Commun. 28, 246 (2007).
32. Li, Y., Cai, W.P., Cao, B.Q., Duan, G.T., Sun, F.Q., Li, C.C., and Jia, L.C.: Two-dimensional hierarchical porous silica film and its tunable superhydrophobicity. Nanotechnology 17, 238 (2006).
33. Li, Y., Duan, G.T., and Cai, W.P.: Controllable superhydrophobic and lipophobic properties of ordered pore indium oxide array films. J. Colloid Interface Sci. 314, 615 (2007).
34. Zhang, G. and Wang, D.: Colloidal lithography—the art of nanochemical patterning. Chem. Asian J. 4, 236 (2009).
35. Li, Y., Koshizaki, N., and Cai, W.: Periodic one-dimensional nanostructured arrays based on colloidal templates, applications, and devices. Coord. Chem. Rev. 255, 357 (2011).
36. Li, Y., Cai, W., and Duan, G.: Ordered micro/nanostructured arrays based on the monolayer colloidal crystals. Chem. Mater. 20, 615 (2008).
37. Li, Y., Cai, W.P., Cao, B.Q., Duan, G.T., Li, C.C., Sun, F.Q., and Zeng, H.B.: Morphology-controlled 2D ordered arrays by heating-induced deformation of 2D colloidal monolayer. J. Mater. Chem. 16, 609 (2006).
38. Duan, G.T., Cai, W.P., Li, Y., Li, Z.G., Cao, B.Q., and Luo, Y.Y.: Transferable ordered Ni hollow sphere arrays induced by electrodeposition on colloidal monolayer. J. Phys. Chem. B 110, 7184 (2006).
39. Li, Y., Li, C.C., Cho, S.O., Duan, G.T., and Cai, W.P.: Silver hierarchical bowl-like array: Synthesis, superhydrophobicity, and optical properties. Langmuir 23, 9802 (2007).
40. Li, Y., Huang, X.J., Heo, S.H., Li, C.C., Choi, Y.K., Cai, W.P., and Cho, S.O.: Superhydrophobic bionic surfaces with hierarchical microsphere/SWCNT composite arrays. Langmuir 23, 2169 (2007).
41. Li, Y., Lee, E.J., and Cho, S.O.: Superhydrophobic coatings on curved surfaces featuring remarkable supporting force. J. Phys. Chem. C 111, 14813 (2007).
42. Min, W-L., Jiang, B., and Jiang, P.: Bioinspired self-cleaning antireflection coatings. Adv. Mater. 20, 3914 (2008).
43. Kosiorek, A., Kandulski, W., Glaczynska, H., and Giersig, M.: Fabrication of nanoscale rings, dots, and rods by combining shadow nanosphere lithography and annealed polystyrene nanosphere masks. Small Mol. 1, 439 (2005).
44. Wang, K.X., Yao, B.D., Morris, M.A., and Holmes, J.D.: Supercritical fluid processing of thermally stable mesoporous titania thin films with enhanced photocatalytic activity. Chem. Mater. 17, 4825 (2005).
45. Zhang, X.T., Jin, M., Liu, Z.Y., Tryk, D.A., Nishimoto, S., Murakami, T., and Fujishima, A.: Superhydrophobic TiO2 surfaces: Preparation, photocatalytic wettability conversion, and superhydrophobic-superhydrophilic patterning. J. Phys. Chem. C 111, 14521 (2007).
46. Gao, W., Dickinson, L., Grozinger, C., Morin, F.G., and Reven, L.: Self-assembled monolayers of alkylphosphonic acids on metal oxides. Langmuir 12, 6429 (1996).
47. Wenzel, R.N.: Surface roughness and contact angle. J. Phys. Colloid Chem. 53, 1446 (1949).
48. Cassie, A.B.D. and Baxter, S.: Wettability of porous surfaces. Trans. Faraday Soc. 40, 546 (1944).
49. Kwak, G., Seol, M., Tak, Y., and Yong, K.: Superhydrophobic ZnO nanowire surface: Chemical modification and effects of UV irradiation. J. Phys. Chem. C 113, 12085 (2009).
50. Li, M., Zhai, J., Liu, H., Song, Y., Jiang, L., and Zhu, D.: Electrochemical deposition of conductive superhydrophobic zinc oxide thin films. J. Phys. Chem. B 107, 9954 (2003).
51. Li, Y., Cai, W.P., Duan, G.T., Cao, B.Q., Sun, F.Q., and Lu, F.: Superhydrophobicity of 2D ZnO ordered pore arrays formed by solution-dipping template method. J. Colloid Interface Sci. 287, 634 (2005).
52. Cui, J.J., Yang, Q.H., and Wang, X.D.: Photocatalysed reduction nature of nano ZnO. Bull. Chin. Ceram. Soc. 1, 23 (2006).
53. Zhou, J.P., Fu, W.L., Qiu, K.Q., and Chen, Q.Y.: Wettability of porous two dimensional ZnO nanocrystal films. J. Funct. Mater. Dev. 13, 195 (2007).
54. Liu, H., Huang, B., Qin, X., Zhang, X., and Wang, Z.: Fabrication and photocatalytic of mushroom-like ZnO microcrystals via a solvothermal route. Rare Met. 30, 173 (2011).
55. Ma, C., Zhou, Z., Wei, H., Yang, Z., Wang, Z., and Zhang, Y.: Rapid large-scale preparation of ZnO nanowire for photocatalytic application. Nano. Res. Lett. 6, 536 (2011).
56. Nasr-Esfahani, M. and Nekoubin, A.: Well-aligned arrays of vertically oriented ZnO nanorod films for photocatalytic degradation of textile dye. AIP Conf. Proc. 1341, 309 (2011).
57. Sun, F., Cai, W., Li, Y., Cao, B., Lei, Y., and Zhang, L.: Morphology-controlled growth of large-area two-dimensional ordered pore arrays. Adv. Funct. Mater. 14, 283 (2004).
58. Li, Y., Cai, W., Duan, G., Cao, B., and Sun, F.: Two-dimensional ordered polymer hollow sphere and convex structure arrays based on monolayer pore films. J. Mater. Res. 20, 338 (2005).

Hierarchical ZnO films with microplate/nanohole structures induced by precursor concentration and colloidal templates, their superhydrophobicity, and enhanced photocatalytic performance

  • Zhigang Li (a1), Guotao Duan (a2), Guangqiang Liu (a2), Zhengfei Dai (a2), Jinlian Hu (a3), Weiping Cai (a4) and Yue Li (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed