Skip to main content Accessibility help

Hierarchical mesoporous Zn–Ni–Co–S microspheres grown on reduced graphene oxide/nickel foam for asymmetric supercapacitors

  • Uwamahoro Evariste (a1), Guohua Jiang (a2), Bo Yu (a1), Yongkun Liu (a1), Zheng Huang (a3), Qiuling Lu (a3) and Pianpian Ma (a2)...


In this work, hierarchical mesoporous Zn–Ni–Co–S–rGO/NF microspheres have been prepared by hydrothermal, sulfurization, and subsequent calcination process. The effect of different sulfurization time on the morphology and capacitance of composites was tested. The high electrochemical performance of (Zn–Ni–Co–S–rGO/NF) composite was obtained when the sulfurization time was 3 h (Zn–Ni–Co–S–rGO/NF-3h), where a specific capacitance of 627.7 F/g at 0.25 A/g and excellent rate capability of about 97.8% capacitance retention at 2 A/g after 4000 cycles were achieved. Moreover, an asymmetric supercapacitor fabricated by (Zn–Ni–Co–S–rGO/NF-3h) composite and activated carbon (AC) as the positive and the negative electrodes, respectively, showed a high energy density of 75.96 W h/kg at a power density of 362.49 W/kg with a remarkable cycle stability performance of 91.2% capacitance retention over 5000 cycles. This incredible electrochemical behavior illustrates that the hierarchical mesoporous Zn–Ni–Co–S–rGO/N-3h microsphere electrodes are promising electrode materials for application in high-performance supercapacitors.


Corresponding author

a)Address all correspondence to these authors. e-mail:


Hide All
1.Gao, J., Xuan, H., Xu, Y., Liang, T., Han, X., Yang, J., Han, P., Wang, D., and Du, Y.: Interconnected network of zinc–cobalt layered double hydroxide stick onto rGO/nickel foam for high performance asymmetric supercapacitors. Electrochim. Acta 286, 92 (2018).
2.Yi, T-F., Wu, J-Z., Xie, Y., and Luo, S.: Hierarchical mesoporous flower-like ZnCo2O4@NiO nanoflakes grown on nickel foam as high-performance electrodes for supercapacitors. Electrochim. Acta 284, 128 (2018).
3.Li, D-J., Lei, S., Wang, Y-Y., Chen, S., Kang, Y., Gu, Z-G., and Zhang, J.: Helical carbon tubes derived from epitaxial Cu-MOF coating on textile for enhanced supercapacitor performance. Dalton Trans. 47, 5558 (2018).
4.Chen, C., Yan, D., Luo, X., Gao, W., Huang, G., Han, Z., Zeng, Y., and Zhu, Z.: Construction of core–shell NiMoO4@Ni–Co–S nanorods as advanced electrodes for high-performance asymmetric supercapacitors. ACS Appl. Mater. Interfaces 10, 4662 (2018).
5.Beka, L.G., Xia, X., and Liu, W.: 3D flower-like CoNi2S4 grown on graphene decorated nickel foam as high performance supercapacitor. Diamond Relat. Mater. 73, 169 (2017).
6.Chai, Z., Wang, Z., Wang, J., Li, X., and Guo, H.: Potentiostatic deposition of nickel–cobalt sulfide nanosheet arrays as binder-free electrode for high-performance pseudocapacitor. Ceram. Int. 13, 15778 (2018).
7.Yumak, T., Bragg, D., and Sabolsky, E.M.: Effect of synthesis methods on the surface and electrochemical characteristics of metal oxide/activated carbon composites for supercapacitor applications. Appl. Surf. Sci. 469, 983 (2019).
8.Yang, Y.J. and Li, W.: Hierarchical Ni–Co double hydroxide nanosheets on reduced graphene oxide self-assembled on Ni foam for high-energy hybrid supercapacitors. J. Alloys Compd. 776, 543 (2019).
9.Jiang, X., Cheng, W., Hu, H., Hu, Y., Cao, Y., Yan, S., Di, R., Wang, X., and Hou, L.: Facile preparation of a novel composite Co–Ni(OH)2/carbon sphere for high-performance supercapacitors. Mater. Technol. 34, 204 (2018).
10.Li, X-X., Wang, X-T., Xiao, K., Ouyang, T., Li, N., and Liu, Z-Q.: In situ formation of consubstantial NiCo2S4 nanorod arrays toward self-standing electrode for high activity supercapacitors and overall water splitting. J. Power Sources 402, 116 (2018).
11.Cheng, C., Zhang, X., Wei, C., Liu, Y., Cui, C., Zhang, Q., and Zhang, D.: Mesoporous hollow ZnCo2S4 core–shell nanospheres for high performance supercapacitors. Ceram. Int. 44, 17464 (2018).
12.Smirnov, M.A., Tarasova, E.V., Vorobiov, V.K., Kasatkin, I.A., Mikli, V., Sokolova, M.P., Bobrova, N.V., Vassiljeva, V., Krumme, A., and Yakimanskiy, A.V.: Electroconductive fibrous mat prepared by electrospinning of polyacrylamide-g-polyaniline copolymers as electrode material for supercapacitors. J. Mater. Sci. 54, 4859 (2018).
13.Wu, X., Meng, L., Wang, Q., Zhang, W., and Wang, Y.: A novel inorganic-conductive polymer core–sheath nanowire arrays as bendable electrode for advanced electrochemical energy storage. Chem. Eng. J. 358, 1464 (2019).
14.Heydari, H., Moosavifard, S.E., Shahraki, M., and Elyasi, S.: Facile synthesis of nanoporous CuS nanospheres for high-performance supercapacitor electrodes. J. Energy Chem. 26, 762 (2017).
15.Yuan, X., Tang, B., Sui, Y., Huang, S., Qi, J., Pu, Y., Wei, F., He, Y., Meng, Q., and Cao, P.: CuCo2S4 nanotubes on carbon fiber papers for high-performance all-solid-state asymmetric supercapacitors. J. Mater. Sci.: Mater. Electron. 29, 8636 (2018).
16.Yang, S., Han, Z., Sun, J., Yang, X., Hu, X., Li, C., and Cao, B.: Controllable ZnFe2O4/reduced graphene oxide hybrid for high-performance supercapacitor electrode. Electrochim. Acta 20, 268 (2018).
17.Sanchez, J.S., Pendashteh, A., Palma, J., Anderson, M., and Marcilla, R.: Porous NiCoMn ternary metal oxide/graphene nanocomposites for high performance hybrid energy storage devices. Electrochim. Acta 44, 279 (2018).
18.Yuksel, R., Kaplan, B.Y., Bicer, E., Yurum, A., Gursel, S.A., and Unalan, H.E.: All-carbon hybrids for high performance supercapacitors. Int. J. Energy Res. 42, 3575 (2018).
19.Xu, W., Lu, J., Huo, W., Li, J., Wang, X., Zhang, C., Gu, X., and Hu, C.: Direct growth of CuCo2S4 nanosheets on carbon fiber textile with enhanced electrochemical pseudocapacitive properties and electrocatalytic properties towards glucose oxidation. Nanoscale 10, 14304 (2018).
20.Meng, Y., Sun, P., He, W., Teng, B., and Xu, X.: Construction of hierarchical Co–Ni–S nanosheets as free-standing electrode for superior-performance asymmetric supercapacitors. Appl. Surf. Sci. 470, 792 (2019).
21.Wang, P., Zhang, Y., Guan, B., Fan, L., Zhang, N., and Sun, K.: Fabrication of CuCo2S4 hollow sphere @N/S doped graphene composites as high performance anode materials for lithium-ion batteries. Ceram. Int. 44, 11905 (2018).
22.Jin, R., Cui, Y., Gao, S., Zhang, S., Yang, L., and Li, G.: CNTs@NC@CuCo2S4 nanocomposites: An advanced electrode for high performance lithium-ion batteries and supercapacitors. Electrochim. Acta 43, 273 (2018).
23.Zhao, F., Huang, W., Zhang, H., and Zhou, D.: Facile synthesis of CoNi2S4/Co9S8 composites as advanced electrode materials for supercapacitors. Appl. Surf. Sci. 426, 1206 (2017).
24.Huang, Y., Quan, L., Liu, T., Chen, Q., Cai, D., and Zhan, H.: Construction of MOF-derived hollow Ni–Zn–Co–S nanosword arrays as binder-free electrodes for asymmetric supercapacitors with high energy density. Nanoscale 10, 14171 (2018).
25.Liu, Y., Jiang, G., Sun, S., Xu, B., Zhou, J., Zhang, Y., and Yao, J.: Decoration of carbon nanofibers with NiCo2S4 nanoparticles for flexible asymmetric supercapacitors. J. Alloys Compd. 731, 560 (2018).
26.Shen, L., Yu, L., Wu, H.B., Yu, X-Y., Zhang, X., and Lou, X.W.D.: Formation of nickel–cobalt sulfide ball-in-ball hollow spheres with enhanced electrochemical pseudocapacitive properties. Nat. Commun. 6, 6694 (2015).
27.Xu, R., Lin, J., Wu, J., Huang, M., Fan, L., He, X., Wang, Y., and Xu, Z.: A two-step hydrothermal synthesis approach to synthesize NiCo2S4/NiS hollow nanospheres for high-performance asymmetric supercapacitors. Appl. Surf. Sci. 422, 597 (2017).
28.Chen, L., Zuo, Y., Zhang, Y., and Gao, Y.: Facile synthesis of ultrathin CuCo2S4 nanosheets for high-performance supercapacitors. Int. J. Electrochem. Sci. 17, 1343 (2018).
29.Liu, Y., Lu, Q., Huang, Z., Sun, S., Yu, B., Evariste, U., Jiang, G., and Yao, J.: Electrodeposition of Ni–Co–S nanosheet arrays on N-doped porous carbon nanofibers for flexible asymmetric supercapacitors. J. Alloys Compd. 762, 301 (2018).
30.Sahoo, S., Naik, K.K., Late, D.J., and Rout, C.S.: Electrochemical synthesis of a ternary transition metal sulfide nanosheets on nickel foam and energy storage application. J. Alloys Compd. 154, 695 (2017).
31.Tao, K., Han, X., Cheng, Q., Yang, Y., Yang, Z., Ma, Q., and Han, L.: A zinc cobalt sulfide nanosheet array derived from a 2D bimetallic metal-organic frameworks for high-performance supercapacitors. Chem. – Eur. J. 24, 12581 (2018).
32.Balamurugan, J., Li, C., Peera, S.G., Kim, N.H., and Lee, J.H.: High-energy asymmetric supercapacitors based on free-standing hierarchical Co–Mo–S nanosheets with enhanced cycling stability. Nanoscale 9, 13747 (2017).
33.Han, X., Xuan, H., Gao, J., Liang, T., Yang, J., Xu, Y., Han, P., and Du, Y.: Construction of manganese-cobalt-sulfide anchored onto rGO/Ni foam with a high capacity for hybrid supercapacitors. Electrochim. Acta 33, 288 (2018).
34.Lin, J., Yan, S., Liu, P., Chang, X., Yao, L., Lin, H., Lu, D., and Han, S.: Facile synthesis of CoNi2S4/graphene nanocomposites as a high-performance electrode for supercapacitors. Res. Chem. Intermed. 44, 4503 (2018).
35.Shen, J., Xu, X., Dong, P., Zhang, Z., Baines, R., Ji, J., Pei, Y., and Ye, M.: Design and synthesis of three-dimensional needle-like CoNi2S4/CNT/graphene nanocomposite with improved electrochemical properties. Ceram. Int. 42, 8120 (2016).
36.Fulari, A.V., Reddy, M.V.R., Jadhav, S.T., Ghodake, G.S., Kim, D.Y., and Lohar, G.M.: TiO2/reduced graphene oxide composite based nano-petals for supercapacitor application: Effect of substrate. J. Mater. Sci.: Mater. Electron. 29, 10814 (2018).
37.Huang, K-J., Zhang, J-Z., Liu, Y., and Liu, Y-M.: Synthesis of reduced graphene oxide wrapped copper sulfide hollow spheres as electrode material for supercapacitor. Int. J. Hydrogen Energy 40, 10158 (2015).
38.Wan, L., Shen, J., Zhang, Y., and Li, X.: Novel ZnMoO4/reduced graphene oxide hybrid as a high-performance anode material for lithium-ion batteries. J. Alloys Compd. 708, 713 (2017).
39.Gong, Y., Zhao, J., Wang, H., and Xu, J.: CuCo2S4/reduced graphene oxide nanocomposites synthesized by one-step solvothermal method as anode materials for sodium ion batteries. Electrochim. Acta 292, 895 (2018).
40.Zhang, G., Chen, Y., Huang, K., Chen, Y., and Guo, H.: CMK-3/NiCo2S4 nanostructures for high performance asymmetric supercapacitors. Mater. Chem. Phys. 220, 270 (2018).
41.Alam, S.N., Sharma, N., and Kumar, L.: Synthesis of graphene oxide (GO) by modified Hummers method and its thermal reduction to obtain reduced graphene oxide (rGO). Graphene 6, 18 (2017).
42.Li, C., Balamurugan, J., Kim, N.H., and Lee, J.H.: Hierarchical Zn–Co–S nanowires as advanced electrodes for all solid state asymmetric supercapacitors. Adv. Energy Mater. 8, 754 (2018).
43.Vignesh, V. and Navamathavan, R.: Spherical-like ball-by-ball architecture of Ni–Co–Zn–S electrodes for electrochemical energy storage application in supercapacitors. J. Electrochem. Soc. 13, 434 (2017).
44.Wang, F., Zheng, J., Li, G., Ma, J., Yang, C., and Wang, Q.: Microwave synthesis of mesoporous CuCo2S4 nanoparticles for supercapacitor applications. Mater. Chem. Phys. 215, 761 (2018).
45.Lv, Y., Liu, A., Shi, Z., Che, H., Mu, J., Guo, Z., and Zhang, X.: Construction of hierarchical zinc cobalt sulfide@nickel sulfide core–shell nanosheet arrays for high-performance asymmetric solid-state supercapacitors. Chem. Eng. J. 349, 12 (2018).
46.He, W., Liang, Z., Ji, K., Sun, Q., Zhai, T., and Xu, X.: Hierarchical Ni–Co–S@Ni–W–O core–shell nanosheet arrays on nickel foam for high-performance asymmetric supercapacitors. Nano Res. 11, 121 (2018).
47.Lin, L., Li, L., Hussain, S., Zhao, S., Wu, L., Peng, X., and Hu, N.: Hierarchical 3D NiCo2O4@ZnWO4 core–shell structures as binder-free electrodes for all-solid-state supercapacitors. Appl. Surf. Sci. 452, 397 (2018).
48.Tong, H., Bai, W., Yue, S., Gao, Z., Lu, L., Shen, L., Dong, S., Zhu, J., He, J., and Zhang, X.: Zinc cobalt sulfide nanosheets grown on nitrogen-doped graphene/carbon nanotube film as a high-performance electrode for supercapacitors. J. Mater. Chem. 4, 1415 (2016).
49.Liu, W., Niu, H., Yang, J., Cheng, K., Ye, K., Zhu, K., Wang, G., Cao, D., and Yan, J.: Ternary transition metal sulfides embedded in graphene nanosheets as both the anode and cathode for high-performance asymmetric supercapacitors. Chem. Mater. 30, 113 (2018).
50.Zhou, H., Yan, Z., Yang, X., Lv, J., Kang, L., and Liu, Z-H.: RGO/MnO2/polypyrrole ternary film electrode for supercapacitor. Mater. Chem. Phys. 13, 177 (2016).
51.Zhang, S-W., Yin, B-S., Liu, C., Wang, Z-B., and Gu, D-M.: Self-assembling hierarchical NiCo2O4/MnO2 nanosheets and MoO3/PPy core–shell heterostructured nanobelts for supercapacitor. Chem. Eng. J. 312, 12256 (2017).
52.Zhao, J., Li, C., Zhang, Q., Zhang, J., Wang, X., Sun, J., Wang, J., Xie, J., Lu, C., Lu, W., and Yao, Y.: All-solid-state hybrid supercapacitors based on ZnCo2O4 nanowire arrays and carbon nanorod electrode materials. Carbon 123, 40 (2017).
53.Sivakumar, P., Jana, M., Kota, M., Jung, M.G., Gedanken, A., and Park, H.S.: Controllable synthesis of nanohorn-like architectured cobalt oxide for hybrid supercapacitor application. J. Power Sources 402, 290 (2018).
54.Feng, Y., Liu, W., Sun, L., Zhu, Y., Chen, Y., Meng, M., Li, J., Yang, J., Zhang, Y., and Liu, K.: Hierarchical MnCo2O4@CoMoO4 core–shell nanowire arrays supported on Ni foam for supercapacitor. J. Alloys Compd. 753, 676 (2018).
55.Wang, Y., Zhang, M., Li, Y., Ma, T., Liu, H., Pan, D., Wang, X., and Wang, A.: Rational design 3D nitrogen-doped graphene supported spatial crosslinked Co3O4@NiCo2O4 on nickel foam for binder-free supercapacitor electrodes. Electrochim. Acta 290, 147 (2018).
56.Rahimia, S., Shahrokhian, S., and Hosseini, H.: Ternary nickel cobalt iron sulfides ultrathin nanosheets grown on 3-D nickel nanocone arrays-nickel plate current collector as a binder-free electrode for fabrication of highly performance supercapacitors. J. Electroanal. Chem. 810, 78 (2018).
57.Yu, M., Li, X., Ma, Y., Liu, R., Liu, J., and Li, S.: Nanohoneycomb-like manganese cobalt sulfide/three dimensional graphene-nickel foam hybrid electrodes for high-rate capability supercapacitors. Appl. Surf. Sci. 396, 1816 (2017).
58.Zheng, Y., Xu, J., Yang, X., Zhang, Y., Shang, Y., and Hu, X.: Decoration NiCo2S4 nanoflakes onto Ppy nanotubes as core–shell heterostructure material for high-performance asymmetric supercapacitor. Chem. Eng. J. 333, 111 (2018).
59.Hussain, S., Liu, T., Javed, M.S., Aslam, N., Shaheen, N., Zhao, S., Zeng, W., and Wang, J.: Amaryllis-like NiCo2S4 nanoflowers for high-performance flexible carbon-fiber-based solid-state supercapacitor. Ceram. Int. 42, 11851 (2016).


Type Description Title
Supplementary materials

Evariste et al. supplementary material
Figures S1-S4 and Tables S1-S2

 Word (3.7 MB)
3.7 MB


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed