Skip to main content Accessibility help
×
Home

Hexagonal close-packed high-entropy alloy formation under extreme processing conditions

  • Ram Devanathan (a1), Weilin Jiang (a1), Karen Kruska (a1), Michele A. Conroy (a1), Timothy C. Droubay (a2) and Jon M. Schwantes (a3)...

Abstract

We assess the validity of criteria based on size mismatch and thermodynamics in predicting the stability of the rare class of high-entropy alloys (HEAs) that form in the hexagonal close-packed crystal structure. We focus on nanocrystalline HEA particles composed predominantly of Mo, Tc, Ru, Rh, and Pd along with Ag, Cd, and Te, which are produced in uranium dioxide fuel under the extreme conditions of nuclear reactor operation. The constituent elements are fission products that aggregate under the combined effects of irradiation and elevated temperature as high as 1200 °C. We present the recent results on alloy nanoparticle formation in irradiated ceria, which was selected as a surrogate for uranium dioxide, to show that radiation-enhanced diffusion plays an important role in the process. This work sheds light on the initial stages of alloy nanoparticle formation from a uniform dispersion of individual metals. The remarkable chemical durability of such multiple principal element alloys presents a solution, namely, an alloy waste form, to the challenge of immobilizing Tc.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: ram.devanathan@pnnl.gov

Footnotes

Hide All
b)

This work was performed while M.A. Conroy was at Pacific Northwest National Laboratory.

Footnotes

References

Hide All
1.Yeh, J.W., Chen, S.K., Lin, S.J., Gan, J.Y., Chin, T.S., Shun, T.T., Tsau, C.H., and Chang, S.Y.: Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes. Adv. Eng. Mater. 6, 299 (2004).
2.Cantor, B., Chang, I., Knight, P., and Vincent, A.: Microstructural development in equiatomic multicomponent alloys. Mater. Sci. Eng., A 375, 213 (2004).
3.Santodonato, L.J., Zhang, Y., Feygenson, M., Parish, C.M., Gao, M.C., Weber, R.J., Neuefeind, J.C., Tang, Z., and Liaw, P.K.: Deviation from high-entropy configurations in the atomic distributions of a multi-principal-element alloy. Nat. Commun. 6, 5964 (2015).
4.Ma, D., Grabowski, B., Körmann, F., Neugebauer, J., and Raabe, D.: Ab initio thermodynamics of the CoCrFeMnNi high entropy alloy: Importance of entropy contributions beyond the configurational one. Acta Mater. 100, 90 (2015).
5.Melnick, A. and Soolshenko, V.: Thermodynamic design of high-entropy refractory alloys. J. Alloys Compd. 694, 223 (2017).
6.Miracle, D. and Senkov, O.: A critical review of high entropy alloys and related concepts. Acta Mater. 122, 448 (2017).
7.Widom, M.: Modeling the structure and thermodynamics of high-entropy alloys. J. Mater. Res. 33, 28812898 (2018).
8.Zhang, Y., Zuo, T.T., Tang, Z., Gao, M.C., Dahmen, K.A., Liaw, P.K., and Lu, Z.P.: Microstructures and properties of high-entropy alloys. Prog. Mater. Sci. 61, 1 (2014).
9.Schön, C.G., Duong, T., Wang, Y., and Arróyave, R.: Probing the entropy hypothesis in highly concentrated alloys. Acta Mater. 148, 263 (2018).
10.Pickering, E. and Jones, N.G.: High-entropy alloys: A critical assessment of their founding principles and future prospects. Int. Mater. Rev. 61, 183 (2016).
11.Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., and George, E.P.: The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Mater. 61, 5743 (2013).
12.Middleburgh, S., King, D., and Lumpkin, G.: Atomic scale modelling of hexagonal structured metallic fission product alloys. R. Soc. Open Sci. 2, 140292 (2015).
13.Gao, M.C., Zhang, C., Gao, P., Zhang, F., Ouyang, L., Widom, M., and Hawk, J.: Thermodynamics of concentrated solid solution alloys. Curr. Opin. Solid State Mater. Sci. 21, 238251 (2017).
14.Senkov, O., Miller, J., Miracle, D., and Woodward, C.: Accelerated exploration of multi-principal element alloys with solid solution phases. Nat. Commun. 6, 6529 (2015).
15.Gorsse, S., Miracle, D.B., and Senkov, O.N.: Mapping the world of complex concentrated alloys. Acta Mater. 135, 177 (2017).
16.Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E.H., George, E.P., and Ritchie, R.O.: A fracture-resistant high-entropy alloy for cryogenic applications. Science 345, 1153 (2014).
17.Tang, Z., Huang, L., He, W., and Liaw, P.K.: Alloying and processing effects on the aqueous corrosion behavior of high-entropy alloys. Entropy 16, 895 (2014).
18.Chuang, M-H., Tsai, M-H., Wang, W-R., Lin, S-J., and Yeh, J-W.: Microstructure and wear behavior of AlxCo1.5CrFeNi1.5Tiy high-entropy alloys. Acta Mater. 59, 6308 (2011).
19.Hemphill, M.A., Yuan, T., Wang, G., Yeh, J., Tsai, C., Chuang, A., and Liaw, P.: Fatigue behavior of Al0.5CoCrCuFeNi high entropy alloys. Acta Mater. 60, 5723 (2012).
20.Yusenko, K.V., Riva, S., Carvalho, P.A., Yusenko, M.V., Arnaboldi, S., Sukhikh, A.S., Hanfland, M., and Gromilov, S.A.: First hexagonal close packed high-entropy alloy with outstanding stability under extreme conditions and electrocatalytic activity for methanol oxidation. Scr. Mater. 138, 22 (2017).
21.Gao, M.C., Zhang, B., Guo, S., Qiao, J., and Hawk, J.: High-entropy alloys in hexagonal close-packed structure. Metall. Mater. Trans. A 47, 3322 (2016).
22.Feuerbacher, M., Heidelmann, M., and Thomas, C.: Hexagonal high-entropy alloys. Mater. Res. Lett. 3, 1 (2015).
23.Gao, M.C. and Alman, D.E.: Searching for next single-phase high-entropy alloy compositions. Entropy 15, 4504 (2013).
24.Takeuchi, A., Amiya, K., Wada, T., Yubuta, K., and Zhang, W.: High-entropy alloys with a hexagonal close-packed structure designed by equi-atomic alloy strategy and binary phase diagrams. JOM 66, 1984 (2014).
25.Zhao, Y., Qiao, J., Ma, S., Gao, M., Yang, H., Chen, M., and Zhang, Y.: A hexagonal close-packed high-entropy alloy: The effect of entropy. Mater. Des. 96, 10 (2016).
26.Youssef, K.M., Zaddach, A.J., Niu, C., Irving, D.L., and Koch, C.C.: A novel low-density, high-hardness, high-entropy alloy with close-packed single-phase nanocrystalline structures. Mater. Res. Lett. 3, 95 (2015).
27.Tracy, C.L., Park, S., Rittman, D.R., Zinkle, S.J., Bei, H., Lang, M., Ewing, R.C., and Mao, W.L.: High pressure synthesis of a hexagonal close-packed phase of the high-entropy alloy CrMnFeCoNi. Nat. Commun. 8, 15634 (2017).
28.Zhang, F., Wu, Y., Lou, H., Zeng, Z., Prakapenka, V.B., Greenberg, E., Ren, Y., Yan, J., Okasinski, J.S., Liu, X., Liu, Y., Zeng, Q., and Lu, Z.: Polymorphism in a high-entropy alloy. Nat. Commun. 8, 15687 (2017).
29.Moon, J., Qi, Y., Tabachnikova, E., Estrin, Y., Choi, W-M., Joo, S-H., Lee, B-J., Podolskiy, A., Tikhonovsky, M., and Kim, H.S.: Microstructure and mechanical properties of high-entropy alloy Co20Cr26Fe20Mn20Ni14 processed by high-pressure torsion at 77 K and 300 K. Sci. Rep. 8, 11074 (2018).
30.Utsunomiya, S. and Ewing, R.C.: The fate of the epsilon phase (Mo–Ru–Pd–Tc–Rh) in the UO2 of the Oklo natural fission reactors. Radiochim. Acta 94, 749 (2006).
31.Bramman, J., Sharpe, R., Thom, D., and Yates, G.: Metallic fission-product inclusions in irradiated oxide fuels. J. Nucl. Mater. 25, 201 (1968).
32.O’Boyle, D., Brown, F., and Dwtght, A.: Analysis of fission product ingots formed in uranium-plutonium oxide irradiated in EBR-II. J. Nucl. Mater. 35, 257 (1970).
33.Kleykamp, H.: The chemical state of the fission products in oxide fuels. J. Nucl. Mater. 131, 221 (1985).
34.Kleykamp, H., Paschoal, J., Pejsa, R., and Thümmler, F.: Composition and structure of fission product precipitates in irradiated oxide fuels: Correlation with phase studies in the Mo–Ru–Rh–Pd and BaO–UO2–ZrO2–MoO2 systems. J. Nucl. Mater. 130, 426 (1985).
35.Kleykamp, H.: Constitution and thermodynamics of the Mo–Ru, Mo–Pd, Ru–Pd, and Mo–Ru–Pd systems. J. Nucl. Mater. 167, 49 (1989).
36.Naito, K., Tsuji, T., Matsui, T., and Date, A.: Chemical state, phases and vapor pressures of fission-produced noble metals in oxide fuel. J. Nucl. Mater. 154, 3 (1988).
37.Buck, E.C., Mausolf, E.J., McNamara, B.K., Soderquist, C.Z., and Schwantes, J.M.: Nanostructure of metallic particles in light water reactor used nuclear fuel. J. Nucl. Mater. 461, 236 (2015).
38.Yang, T., Li, C., Zinkle, S.J., Zhao, S., Bei, H., and Zhang, Y.: Irradiation responses and defect behavior of single-phase concentrated solid solution alloys. J. Mater. Res. 33, 3077 (2018).
39.Cui, D., Rondinella, V.V., Fortner, J.A., Kropf, A.J., Eriksson, L., Wronkiewicz, D.J., and Spahiu, K.: Characterization of alloy particles extracted from spent nuclear fuel. J. Nucl. Mater. 420, 328 (2012).
40.Lucuta, P.G., Verrall, R.A., Matzke, H., and Palmer, B.J.: Microstructural features of SIMFUEL—Simulated high-burnup UO2-based nuclear fuel. J. Nucl. Mater. 178, 48 (1991).
41.Crum, J.V., Strachan, D., Rohatgi, A., and Zumhoff, M.: Epsilon metal waste form for immobilization of noble metals from used nuclear fuel. J. Nucl. Mater. 441, 103 (2013).
42.Cui, D., Low, J., Sjoestedt, C.J., and Spahiu, K.: On Mo–Ru–Tc–Pd–Rh–Te alloy particles extracted from spent fuel and their leaching behavior under Ar and H2 atmospheres. Radiochim. Acta 92, 551 (2004).
43.Yablinsky, C.A., Devanathan, R., Pakarinen, J., Gan, J., Severin, D., Trautmann, C., and Allen, T.R.: Characterization of swift heavy ion irradiation damage in ceria. J. Mater. Res. 30, 1473 (2015).
44.Devanathan, R.: Molecular dynamics simulation of fission fragment damage in nuclear fuel and surrogate material. MRS Adv. 2, 1225 (2017).
45.Jiang, W., Conroy, M.A., Kruska, K., Overman, N.R., Droubay, T.C., Gigax, J., Shao, L., and Devanathan, R.: Nanoparticle precipitation in irradiated and annealed ceria doped with metals for emulation of spent fuels. J. Phys. Chem. C 121, 22465 (2017).
46.Gao, M.C., Gao, P., Hawk, J.A., Ouyang, L., Alman, D.E., and Widom, M.: Computational modeling of high-entropy alloys: Structures, thermodynamics and elasticity. J. Mater. Res. 32, 3627 (2017).
47.Guo, S., Ng, C., Lu, J., and Liu, C.: Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. J. Appl. Phys. 109, 103505 (2011).
48.King, D.J.M., Burr, P.A., Obbard, E.G., and Middleburgh, S.C.: DFT study of the hexagonal high-entropy alloy fission product system. J. Nucl. Mater. 488, 70 (2017).
49.Huang, J.L., Li, Z., Duan, H.H., Cheng, Z.Y., Li, Y.D., Zhu, J., and Yu, R.: Formation of hexagonal-close packed (HCP) rhodium as a size effect. J. Am. Chem. Soc. 139, 575 (2017).
50.Serne, R.J., Crum, J.V., Riley, B.J., and Levitskaia, T.G.: Options for the Separation and Immobilization of Technetium, PNNL-25834 (Pacific Northwest National laboratory, Richland, WA, 2016).
51.Senkov, O. and Miracle, D.: A new thermodynamic parameter to predict formation of solid solution or intermetallic phases in high entropy alloys. J. Alloys Compd. 658, 603 (2016).
52.King, D.J.M. and McGregor, A.J.: Alloy Search and Predict (2015). Available at: http://www.alloyasap.com.
53.Takeuchi, A. and Inoue, A.: Classification of bulk metallic glasses by atomic size difference, heat of mixing and period of constituent elements and its application to characterization of the main alloying element. Mater. Trans. 46, 2817 (2005).
54.Yang, X. and Zhang, Y.: Prediction of high-entropy stabilized solid-solution in multi-component alloys. Mater. Chem. Phys. 132, 233 (2012).
55.King, D., Middleburgh, S., McGregor, A., and Cortie, M.: Predicting the formation and stability of single phase high-entropy alloys. Acta Mater. 104, 172 (2016).
56.Troparevsky, M.C., Morris, J.R., Kent, P.R., Lupini, A.R., and Stocks, G.M.: Criteria for predicting the formation of single-phase high-entropy alloys. Phys. Rev. X 5, 011041 (2015).
57.Massalski, T.B.: Comments concerning some features of phase diagrams and phase transformations. Mater. Trans. 51, 583 (2010).

Keywords

Type Description Title
WORD
Supplementary materials

Devanathan et al. supplementary material
Table S1 and Figure S1

 Word (291 KB)
291 KB

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed