Hostname: page-component-8448b6f56d-gtxcr Total loading time: 0 Render date: 2024-04-24T13:26:45.599Z Has data issue: false hasContentIssue false

Heterogeneous deformation of two-dimensional materials for emerging functionalities

Published online by Cambridge University Press:  24 February 2020

Jin Myung Kim*
Affiliation:
Department of Materials Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Chullhee Cho
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
Ezekiel Y. Hsieh
Affiliation:
Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
SungWoo Nam*
Affiliation:
Department of Materials Science and Engineering, Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA
*
a)Address all correspondence to these authors. e-mail: jk25@illinois.edu
Get access

Abstract

Atomically thin 2D materials exhibit strong intralayer covalent bonding and weak interlayer van der Waals interactions, offering unique high in-plane strength and out-of-plane flexibility. While atom-thick nature of 2D materials may cause uncontrolled intrinsic/extrinsic deformation in multiple length scales, it also provides new opportunities for exploring coupling between heterogeneous deformations and emerging functionalities in controllable and scalable ways for electronic, optical, and optoelectronic applications. In this review, we discuss (i) the mechanical characteristics of 2D materials, (ii) uncontrolled inherent deformation and extrinsic heterogeneity present in 2D materials, (iii) experimental strategies for controlled heterogeneous deformation of 2D materials, (iv) 3D structure-induced novel functionalities via crumple/wrinkle structure or kirigami structures, and (v) heterogeneous strain-induced emerging functionalities in exciton and phase engineering. Overall, heterogeneous deformation offers unique advantages for 2D materials research by enabling spatial tunability of 2D materials' interactions with photons, electrons, and molecules in a programmable and controlled manner.

Type
Invited Review
Copyright
Copyright © Materials Research Society 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Footnotes

c)

These authors contributed equally to this work.

This section of Journal of Materials Research is reserved for papers that are reviews of literature in a given area.

References

Novoselov, K.S., Jiang, D., Schedin, F., Booth, T.J., Khotkevich, V.V., Morozov, S.V., and Geim, A.K.: Two-dimensional atomic crystals. Proc. Natl. Acad. Sci. U. S. A. 102, 10451 (2005).CrossRefGoogle ScholarPubMed
Akinwande, D., Petrone, N., and Hone, J.: Two-dimensional flexible nanoelectronics. Nat. Commun. 5, 5678 (2014).CrossRefGoogle ScholarPubMed
Wang, Q.H., Kalantar-Zadeh, K., Kis, A., Coleman, J.N., and Strano, M.S.: Electronics and optoelectronics of two-dimensional transition metal dichalcogenides. Nat. Nanotechnol. 7, 699 (2012).CrossRefGoogle ScholarPubMed
Guinea, F., Katsnelson, M.I., and Geim, A.K.: Energy gaps and a zero-field quantum hall effect in graphene by strain engineering. Nat. Phys. 6, 30 (2010).CrossRefGoogle Scholar
Levy, N., Burke, S.A., Meaker, K.L., Panlasigui, M., Zettl, A., Guinea, F., Castro Neto, A.H., and Crommie, M.F.: Strain-induced pseudo-magnetic fields greater than 300 tesla in graphene nanobubbles. Science 329, 544 (2010).CrossRefGoogle ScholarPubMed
Lee, C., Wei, X., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).CrossRefGoogle ScholarPubMed
Novoselov, K.S., Geim, A.K., V Morozov, S., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric field effect in atomically thin carbon films. Science 306, 666 (2004).CrossRefGoogle ScholarPubMed
Zhao, Q., Nardelli, M.B., and Bernholc, J.: Ultimate strength of carbon nanotubes: A theoretical study. Phys. Rev. B: Condens. Matter Mater. Phys. 65, 1 (2002).CrossRefGoogle Scholar
Frank, I.W., Tanenbaum, D.M., Van Der Zande, A.M., and McEuen, P.L.: Mechanical properties of suspended graphene sheets. J. Vac. Sci. Technol., B: Microelectron. Nanometer Struct. 25, 2558 (2007).CrossRefGoogle Scholar
Wei, Y., Wang, B., Wu, J., Yang, R., and Dunn, M.L.: Bending rigidity and Gaussian bending stiffness of single-layered graphene. Nano Lett. 13, 26 (2013).CrossRefGoogle ScholarPubMed
Vijayaraghavan, V. and Zhang, L.: Effective mechanical properties and thickness determination of boron nitride nanosheets using molecular dynamics simulation. Nanomaterials 8, 546 (2018).CrossRefGoogle ScholarPubMed
Boldrin, L., Scarpa, F., Chowdhury, R., and Adhikari, S.: Effective mechanical properties of hexagonal boron nitride nanosheets. Nanotechnology 22, 505702 (2011).CrossRefGoogle ScholarPubMed
Jiang, J.W., Qi, Z., Park, H.S., and Rabczuk, T.: Elastic bending modulus of single-layer molybdenum disulfide (MoS2): Finite thickness effect. Nanotechnology 24, 435705 (2013).CrossRefGoogle ScholarPubMed
Lai, K., Zhang, W.B., Zhou, F., Zeng, F., and Tang, B.Y.: Bending rigidity of transition metal dichalcogenide monolayers from first-principles. J. Phys. D: Appl. Phys. 49, 185301 (2016).CrossRefGoogle Scholar
Verma, D., Hourahine, B., Frauenheim, T., James, R.D., and Dumitricǎ, T.: Directional-dependent thickness and bending rigidity of phosphorene. Phys. Rev. B 94, 121404(R) (2016).CrossRefGoogle Scholar
Meyer, J.C., Geim, A.K., Katsnelson, M.I., Novoselov, K.S., Booth, T.J., and Roth, S.: The structure of suspended graphene sheets. Nature 446, 60 (2007).CrossRefGoogle ScholarPubMed
Lui, C.H., Liu, L., Mak, K.F., Flynn, G.W., and Heinz, T.F.: Ultraflat graphene. Nature 462, 339 (2009).CrossRefGoogle ScholarPubMed
Fasolino, A., Los, J.H., and Katsnelson, M.I.: Intrinsic ripples in graphene. Nat. Mater. 6, 858 (2007).CrossRefGoogle ScholarPubMed
Mermin, N.D.: Crystalline order in two dimensions. Phys. Rev. 176, 250 (1968).CrossRefGoogle Scholar
Wang, W., Yang, S., and Wang, A.: Observation of the unexpected morphology of graphene wrinkle on copper substrate. Sci. Rep. 7, 1 (2017).Google ScholarPubMed
Deng, B., Pang, Z., Chen, S., Li, X., Meng, C., Li, J., Liu, M., Wu, J., Qi, Y., Dang, W., Yang, H., Zhang, Y., Zhang, J., Kang, N., Xu, H., Fu, Q., Qiu, X., Gao, P., Wei, Y., Liu, Z., and Peng, H.: Wrinkle-free single-crystal graphene wafer grown on strain-engineered substrates. ACS Nano 11, 12337 (2017).CrossRefGoogle ScholarPubMed
Germanium, H., Lee, J., Lee, E.K., Joo, W., Jang, Y., Kim, B., Lim, J.Y., Choi, S., Ahn, S.J., Ahn, J.R., Park, M., Yang, C., Choi, B.L., Hwang, S., and Whang, D.: Wafer-scale growth of single-crystal. Science 344, 286 (2014).Google Scholar
Ghorbanfekr-Kalashami, H., Vasu, K.S., Nair, R.R., Peeters, F.M., and Neek-Amal, M.: Dependence of the shape of graphene nanobubbles on trapped substance. Nat. Commun. 8, 15844 (2017).CrossRefGoogle ScholarPubMed
Sanchez, D.A., Dai, Z., Wang, P., Cantu-Chavez, A., Brennan, C.J., Huang, R., and Lu, N.: Mechanics of spontaneously formed nanoblisters trapped by transferred 2D crystals. Proc. Natl. Acad. Sci. U. S. A. 115, 7884 (2018).CrossRefGoogle ScholarPubMed
Khestanova, E., Guinea, F., Fumagalli, L., Geim, A.K., and Grigorieva, I.V.: Universal shape and pressure inside bubbles appearing in van der Waals heterostructures. Nat. Commun. 7, 12587 (2016).CrossRefGoogle ScholarPubMed
Dai, Z., Hou, Y., Sanchez, D.A., Wang, G., Brennan, C.J., Zhang, Z., Liu, L., and Lu, N.: Interface-governed deformation of nanobubbles and nanotents formed by two-dimensional materials. Phys. Rev. Lett. 121, 266101 (2018).CrossRefGoogle ScholarPubMed
Palacios-Berraquero, C., Kara, D.M., Montblanch, A.R.P., Barbone, M., Latawiec, P., Yoon, D., Ott, A.K., Loncar, M., Ferrari, A.C., and Atatüre, M.: Large-scale quantum-emitter arrays in atomically thin semiconductors. Nat. Commun. 8, 15093 (2017).CrossRefGoogle ScholarPubMed
Bark, C.W., Felker, D.A., Wang, Y., Zhangd, Y., Jang, H.W., Folkman, C.M., Park, J.W., Baek, S.H., Zhou, H., Fong, D.D., Pan, X.Q., Tsymbal, E.Y., Rzchowski, M.S., and Eom, C.B.: Tailoring a two-dimensional electron gas at the LaAlO3/SrTiO3 (001) interface by epitaxial strain. Proc. Natl. Acad. Sci. U. S. A. 108, 4720 (2011).CrossRefGoogle Scholar
Xie, S., Tu, L., Han, Y., Huang, L., Kang, K., Lao, K.U., Poddar, P., Park, C., Muller, D.A., DiStasio, R.A., and Park, J.: Coherent, atomically thin transition-metal dichalcogenide superlattices with engineered strain. Science 359, 1131 (2018).CrossRefGoogle ScholarPubMed
Lou, S., Liu, Y., Yang, F., Lin, S., Zhang, R., Deng, Y., Wang, M., Tom, K.B., Zhou, F., Ding, H., Bustillo, K.C., Wang, X., Yan, S., Scott, M., Minor, A., and Yao, J.: Three-dimensional architecture enabled by strained two-dimensional material heterojunction. Nano Lett. 18, 1819 (2018).CrossRefGoogle ScholarPubMed
Jiang, J.W.: Misfit strain-induced buckling for transition-metal dichalcogenide lateral heterostructures: A molecular dynamics study. Acta Mech. Solida Sin. 32, 17 (2019).CrossRefGoogle Scholar
Kumar, S., Kaczmarczyk, A., and Gerardot, B.D.: Strain-induced spatial and spectral isolation of quantum emitters in mono- and bilayer WSe2. Nano Lett. 15, 7567 (2015).CrossRefGoogle ScholarPubMed
Branny, A., Kumar, S., Proux, R., and Gerardot, B.D.: Deterministic strain-induced arrays of quantum emitters in a two-dimensional semiconductor. Nat. Commun. 8, 15053 (2017).CrossRefGoogle Scholar
Luo, Y., Shepard, G.D., Ardelean, J.V., Rhodes, D.A., Kim, B., Barmak, K., Hone, J.C., and Strauf, S.: Deterministic coupling of site-controlled quantum emitters in monolayer WSe2 to plasmonic nanocavities. Nat. Nanotechnol. 13, 1137 (2018).CrossRefGoogle ScholarPubMed
Reserbat-Plantey, A., Kalita, D., Han, Z., Ferlazzo, L., Autier-Laurent, S., Komatsu, K., Li, C., Weil, R., Ralko, A., Marty, L., Guéron, S., Bendiab, N., Bouchiat, H., and Bouchiat, V.: Strain superlattices and macroscale suspension of graphene induced by corrugated substrates. Nano Lett. 14, 5044 (2014).CrossRefGoogle ScholarPubMed
Kern, J., Niehues, I., Tonndorf, P., Schmidt, R., Wigger, D., Schneider, R., Stiehm, T., Michaelis de Vasconcellos, S., Reiter, D.E., Kuhn, T., and Bratschitsch, R.: Nanoscale positioning of single-photon emitters in atomically thin WSe2. Adv. Mater. 28, 7101 (2016).CrossRefGoogle ScholarPubMed
Cai, T., Dutta, S., Aghaeimeibodi, S., Yang, Z., Nah, S., Fourkas, J.T., and Waks, E.: Coupling emission from single localized defects in two-dimensional semiconductor to surface plasmon polaritons. Nano Lett. 17, 6564 (2017).CrossRefGoogle ScholarPubMed
Li, H., Contryman, A.W., Qian, X., Ardakani, S.M., Gong, Y., Wang, X., Weisse, J.M., Lee, C.H., Zhao, J., Ajayan, P.M., Li, J., Manoharan, H.C., and Zheng, X.: Optoelectronic crystal of artificial atoms in strain-textured molybdenum disulphide. Nat. Commun. 6, 7381 (2015).CrossRefGoogle ScholarPubMed
Liu, T., Liu, S., Tu, K.H., Schmidt, H., Chu, L., Xiang, D., Martin, J., Eda, G., Ross, C.A., and Garaj, S.: Crested two-dimensional transistors. Nat. Nanotechnol. 14, 223 (2019).CrossRefGoogle ScholarPubMed
Choi, J., Kim, H.J., Wang, M.C., Leem, J., King, W.P., and Nam, S.: Three-dimensional integration of graphene via swelling, shrinking, and adaptation. Nano Lett. 15, 4525 (2015).CrossRefGoogle ScholarPubMed
Wang, M.C., Chun, S., Han, R.S., Ashraf, A., Kang, P., and Nam, S.: Heterogeneous, three-dimensional texturing of graphene. Nano Lett. 15, 1829 (2015).CrossRefGoogle ScholarPubMed
Leem, J., Wang, M.C., Kang, P., and Nam, S.: Mechanically self-assembled, three-dimensional graphene-gold hybrid nanostructures for advanced nanoplasmonic sensors. Nano Lett. 15, 7684 (2015).CrossRefGoogle ScholarPubMed
Deng, S., Rhee, D., Lee, W-K., Che, S., Keisham, B., Berry, V., and Odom, T.W.: Graphene wrinkles enable spatially defined chemistry. Nano Lett. 19, 5640 (2019).CrossRefGoogle ScholarPubMed
Lee, W.K., Kang, J., Chen, K.S., Engel, C.J., Bin Jung, W., Rhee, D., Hersam, M.C., and Odom, T.W.: Multiscale, hierarchical patterning of graphene by conformal wrinkling. Nano Lett. 16, 7121 (2016).CrossRefGoogle ScholarPubMed
Kang, P., Wang, M.C., Knapp, P.M., and Nam, S.W.: Crumpled graphene photodetector with enhanced, strain-tunable, and wavelength-selective photoresponsivity. Adv. Mater. 28, 4639 (2016).CrossRefGoogle ScholarPubMed
Choi, J., Mun, J., Wang, M.C., Ashraf, A., Kang, S-W., and Nam, S.: Hierarchical, dual-scale structures of atomically thin MoS2 for tunable wetting. Nano Lett. 17, 1756 (2017).CrossRefGoogle ScholarPubMed
Quereda, J., San-Jose, P., Parente, V., Vaquero-Garzon, L., Molina-Mendoza, A.J., Agraït, N., Rubio-Bollinger, G., Guinea, F., Roldán, R., and Castellanos-Gomez, A.: Strong modulation of optical properties in black phosphorus through strain-engineered rippling. Nano Lett. 16, 2931 (2016).CrossRefGoogle ScholarPubMed
Dhakal, K.P., Roy, S., Jang, H., Chen, X., Yun, W.S., Kim, H., Lee, J., Kim, J., and Ahn, J.H.: Local strain induced band gap modulation and photoluminescence enhancement of multilayer transition metal dichalcogenides. Chem. Mater. 29, 5124 (2017).CrossRefGoogle Scholar
Kim, M., Kang, P., Leem, J., and Nam, S.W.: A stretchable crumpled graphene photodetector with plasmonically enhanced photoresponsivity. Nanoscale 9, 4058 (2017).CrossRefGoogle ScholarPubMed
Krishna, A., Kim, J.M., Leem, J., Wang, M.C., Nam, S., and Lee, J.: Ultraviolet to mid-infrared emissivity control by mechanically reconfigurable graphene. Nano Lett. 19, 5086 (2019).CrossRefGoogle ScholarPubMed
Snapp, P., Kang, P., Leem, J., and Nam, S.W.: Colloidal photonic crystal strain sensor integrated with deformable graphene phototransducer. Adv. Funct. Mater. 28, 1902216 (2019).CrossRefGoogle Scholar
Leem, J., Lee, Y., Wang, M.C., Kim, J.M., Mun, J., Haque, M.F., Kang, S-W., and Nam, S.: Crack-assisted, localized deformation of van der Waals materials for enhanced strain confinement. 2D Mater. 6, 044001 (2019).CrossRefGoogle Scholar
Zang, J., Ryu, S., Pugno, N., Wang, Q., Tu, Q., Buehler, M.J., and Zhao, X.: Multifunctionality and control of the crumpling and unfolding of large-area graphene. Nat. Mater. 12, 321 (2013).CrossRefGoogle ScholarPubMed
Thomas, A.V., Andow, B.C., Suresh, S., Eksik, O., Yin, J., Dyson, A.H., and Koratkar, N.: Controlled crumpling of graphene oxide films for tunable optical transmittance. Adv. Mater. 27, 3256 (2015).CrossRefGoogle ScholarPubMed
Castellanos-Gomez, A., Roldán, R., Cappelluti, E., Buscema, M., Guinea, F., Van Der Zant, H.S.J., and Steele, G.A.: Local strain engineering in atomically thin MoS2. Nano Lett. 13, 5361 (2013).CrossRefGoogle ScholarPubMed
Yang, S., Wang, C., Sahin, H., Chen, H., Li, Y., Li, S.S., Suslu, A., Peeters, F.M., Liu, Q., Li, J., and Tongay, S.: Tuning the optical, magnetic, and electrical properties of ReSe2 by nanoscale strain engineering. Nano Lett. 15, 1660 (2015).CrossRefGoogle ScholarPubMed
Whitby, R.L.D.: Chemical control of graphene architecture: Tailoring shape and properties. ACS Nano 8, 9733 (2014).CrossRefGoogle ScholarPubMed
Chen, W., Gui, X., Liang, B., Liu, M., Lin, Z., Zhu, Y., and Tang, Z.: Controllable fabrication of large-area wrinkled graphene on a solution surface. ACS Appl. Mater. Interfaces 8, 10977 (2016).CrossRefGoogle ScholarPubMed
Guinea, F., Horovitz, B., and Le Doussal, P.: Gauge fields, ripples and wrinkles in graphene layers. Solid State Commun. 149, 1140 (2009).CrossRefGoogle Scholar
Wang, M.C., Leem, J., Kang, P., Choi, J., Knapp, P., Yong, K., and Nam, S.W.: Mechanical instability driven self-assembly and architecturing of 2D materials. 2D Mater. 4, 022002 (2017).CrossRefGoogle Scholar
Kang, P., Kim, K.H., Park, H.G., and Nam, S.W.: Mechanically reconfigurable architectured graphene for tunable plasmonic resonances. Light: Sci. Appl. 7, 17 (2018).CrossRefGoogle ScholarPubMed
Kubiak, K.J., Wilson, M.C.T., Mathia, T.G., and Carval, P.: Wettability versus roughness of engineering surfaces. Wear 271, 523 (2011).CrossRefGoogle Scholar
Lee, W., Liu, Y., Lee, Y., Sharma, B.K., Shinde, S.M., Kim, S.D., Nan, K., Yan, Z., Han, M., Huang, Y., Zhang, Y., Ahn, J.H., and Rogers, J.A.: Two-dimensional materials in functional three-dimensional architectures with applications in photodetection and imaging. Nat. Commun. 9, 1417 (2018).CrossRefGoogle ScholarPubMed
Zheng, W., Huang, W., Gao, F., Yang, H., Dai, M., Liu, G., Yang, B., Zhang, J., Fu, Y.Q., Chen, X., Qiu, Y., Jia, D., Zhou, Y., and Hu, P.: Kirigami-inspired highly stretchable nanoscale devices using multidimensional deformation of monolayer MoS2. Chem. Mater. 30, 6063 (2018).CrossRefGoogle Scholar
Blees, M.K., Barnard, A.W., Rose, P.A., Roberts, S.P., McGill, K.L., Huang, P.Y., Ruyack, A.R., Kevek, J.W., Kobrin, B., Muller, D.A., and McEuen, P.L.: Graphene kirigami. Nature 524, 204 (2015).CrossRefGoogle ScholarPubMed
Yong, K., De, S., Hsieh, E.Y., Leem, J., Aluru, N.R., and Nam, S.: Kirigami-inspired strain-insensitive sensors based on atomically-thin materials. Mater. Today (2019). In press - https://doi.org/10.1016/j.mattod.2019.08.013.Google Scholar
Gant, P., Huang, P., Pérez de Lara, D., Guo, D., Frisenda, R., and Castellanos-Gomez, A.: A strain tunable single-layer MoS2 photodetector. Mater. Today 27, 8 (2019).CrossRefGoogle Scholar
Li, H., Tsai, C., Koh, A.L., Cai, L., Contryman, A.W., Fragapane, A.H., Zhao, J., Han, H.S., Manoharan, H.C., Abild-Pedersen, F., Nørskov, J.K., and Zheng, X.: Activating and optimizing MoS2 basal planes for hydrogen evolution through the formation of strained sulphur vacancies. Nat. Mater. 15, 48 (2015).CrossRefGoogle ScholarPubMed
Conley, H.J., Wang, B., Ziegler, J.I., Haglund, R.F., Pantelides, S.T., and Bolotin, K.I.: Bandgap engineering of strained monolayer and bilayer MoS2. Nano Lett. 13, 3626 (2013).CrossRefGoogle ScholarPubMed
Duerloo, K.A.N., Li, Y., and Reed, E.J.: Structural phase transitions in two-dimensional Mo- and W-dichalcogenide monolayers. Nat. Commun. 5, 4214 (2014).CrossRefGoogle ScholarPubMed
Wang, C., Liu, Y., Li, L., and Tan, H.: Anisotropic thermal conductivity of graphene wrinkles. Nanoscale 6, 5703 (2014).CrossRefGoogle ScholarPubMed
Cui, L., Du, X., Wei, G., and Feng, Y.: Thermal conductivity of graphene wrinkles: A molecular dynamics simulation. J. Phys. Chem. C 120, 23807 (2016).CrossRefGoogle Scholar
Deng, S., Sumant, A.V., and Berry, V.: Strain engineering in two-dimensional nanomaterials beyond graphene. Nano Today 22, 14 (2018).CrossRefGoogle Scholar
Dai, Z., Liu, L., and Zhang, Z.: Strain engineering of 2D materials: Issues and opportunities at the interface. Adv. Mater. 31, 1 (2019).Google Scholar
Mueller, T. and Malic, E.: Exciton physics and device application of two-dimensional transition metal dichalcogenide semiconductors. npj 2D Mater. Appl. 2, 1 (2018).CrossRefGoogle Scholar
Desai, S.B., Seol, G., Kang, J.S., Fang, H., Battaglia, C., Kapadia, R., Ager, J.W., Guo, J., and Javey, A.: Strain-induced indirect to direct bandgap transition in multilayer WSe2. Nano Lett. 14, 4592 (2014).CrossRefGoogle ScholarPubMed
Niehues, I., Schmidt, R., Drüppel, M., Marauhn, P., Christiansen, D., Selig, M., Berghäuser, G., Wigger, D., Schneider, R., Braasch, L., Koch, R., Castellanos-Gomez, A., Kuhn, T., Knorr, A., Malic, E., Rohlfing, M., Michaelis De Vasconcellos, S., and Bratschitsch, R.: Strain control of exciton-phonon coupling in atomically thin semiconductors. Nano Lett. 18, 1751 (2018).CrossRefGoogle ScholarPubMed
Feng, J., Qian, X., Huang, C.W., and Li, J.: Strain-engineered artificial atom as a broad-spectrum solar energy funnel. Nat. Photonics 6, 866 (2012).CrossRefGoogle Scholar
Mangu, V.S., Zamiri, M., Brueck, S.R.J., and Cavallo, F.: Strain engineering, efficient excitonic photoluminescence, and exciton funnelling in unmodified MoS2 nanosheets. Nanoscale 9, 16602 (2017).CrossRefGoogle ScholarPubMed
Tyurnina, A.V., Bandurin, D.A., Khestanova, E., Kravets, V.G., Koperski, M., Guinea, F., Grigorenko, A.N., Geim, A.K., and Grigorieva, I.V.: Strained bubbles in van der Waals heterostructures as local emitters of photoluminescence with adjustable wavelength. ACS Photonics 6, 516 (2019).CrossRefGoogle Scholar
Cordovilla Leon, D.F., Li, Z., Jang, S.W., Cheng, C.H., and Deotare, P.B.: Exciton transport in strained monolayer WSe2. Appl. Phys. Lett. 113, 252101 (2018).CrossRefGoogle Scholar
Chakraborty, C., Kinnischtzke, L., Goodfellow, K.M., Beams, R., and Vamivakas, A.N.: Voltage-controlled quantum light from an atomically thin semiconductor. Nat. Nanotechnol. 10, 507 (2015).CrossRefGoogle ScholarPubMed
He, Y.M., Clark, G., Schaibley, J.R., He, Y., Chen, M.C., Wei, Y.J., Ding, X., Zhang, Q., Yao, W., Xu, X., Lu, C.Y., and Pan, J.W.: Single quantum emitters in monolayer semiconductors. Nat. Nanotechnol. 10, 497 (2015).CrossRefGoogle ScholarPubMed
Koperski, M., Nogajewski, K., Arora, A., Cherkez, V., Mallet, P., Veuillen, J.Y., Marcus, J., Kossacki, P., and Potemski, M.: Single photon emitters in exfoliated WSe2 structures. Nat. Nanotechnol. 10, 503 (2015).CrossRefGoogle ScholarPubMed
Srivastava, A., Sidler, M., Allain, A.V., Lembke, D.S., Kis, A., and Imamoglu, A.: Optically active quantum dots in monolayer WSe2. Nat. Nanotechnol. 10, 491 (2015).CrossRefGoogle ScholarPubMed
Iff, O., Tedeschi, D., Martín-Sánchez, J., Moczała-Dusanowska, M., Tongay, S., Yumigeta, K., Taboada-Gutiérrez, J., Savaresi, M., Rastelli, A., Alonso-González, P., Höfling, S., Trotta, R., and Schneider, C.: Strain-tunable single photon sources in WSe2 monolayers. Nano Lett. 19, 6931 (2019).CrossRefGoogle ScholarPubMed
Kim, H., Moon, J.S., Noh, G., Lee, J., and Kim, J-H.: Position and frequency control of strain-induced quantum emitters in WSe2 monolayers. Nano Lett. 19, 7534 (2019).CrossRefGoogle ScholarPubMed
Voiry, D., Yamaguchi, H., Li, J., Silva, R., Alves, D.C.B., Fujita, T., Chen, M., Asefa, T., Shenoy, V.B., Eda, G., and Chhowalla, M.: Enhanced catalytic activity in strained chemically exfoliated WS2 nanosheets for hydrogen evolution. Nat. Mater. 12, 850 (2013).CrossRefGoogle Scholar
Cho, S., Kim, S., Kim, J.H., Zhao, J., Seok, J., Keum, D.H., Baik, J., Choe, D.H., Chang, K.J., Suenaga, K., Kim, S.W., Lee, Y.H., and Yang, H.: Phase patterning for ohmic homojunction contact in MoTe2. Science 349, 625 (2015).CrossRefGoogle Scholar
Zhang, F., Zhang, H., Krylyuk, S., Milligan, C.A., Zhu, Y., Zemlyanov, D.Y., Bendersky, L.A., Burton, B.P., Davydov, A.V., and Appenzeller, J.: Electric-field induced structural transition in vertical MoTe2- and Mo1−xWxTe2-based resistive memories. Nat. Mater. 18, 55 (2019).CrossRefGoogle ScholarPubMed
Hou, W., Azizimanesh, A., Sewaket, A., Peña, T., Watson, C., Liu, M., Askari, H., and Wu, S.M.: Strain-based room-temperature non-volatile MoTe2 ferroelectric phase change transistor. Nat. Nanotechnol. 14, 668 (2019).CrossRefGoogle ScholarPubMed
Huang, H.H., Fan, X., Singh, D.J., Chen, H., Jiang, Q., and Zheng, W.T.: Controlling phase transition for single-layer MTe2 (M = Mo and W): Modulation of the potential barrier under strain. Phys. Chem. Chem. Phys. 18, 4086 (2016).CrossRefGoogle ScholarPubMed
Song, S., Keum, D.H., Cho, S., Perello, D., Kim, Y., and Lee, Y.H.: Room temperature semiconductor-metal transition of MoTe2 thin films engineered by strain. Nano Lett. 16, 188 (2016).CrossRefGoogle ScholarPubMed
Apte, A., Kochat, V., Rajak, P., Krishnamoorthy, A., Manimunda, P., Hachtel, J.A., Idrobo, J.C., Syed Amanulla, S.A., Vashishta, P., Nakano, A., Kalia, R.K., Tiwary, C.S., and Ajayan, P.M.: Structural phase transformation in strained monolayer MoWSe2 alloy. ACS Nano 12, 3468 (2018).CrossRefGoogle ScholarPubMed
Yang, H., Kim, S.W., Chhowalla, M., and Lee, Y.H.: Structural and quantum-state phase transition in van der Waals layered materials. Nat. Phys. 13, 931 (2017).CrossRefGoogle Scholar
Webster, L. and Yan, J.A.: Strain-tunable magnetic anisotropy in monolayer CrCl3, CrBr3, and CrI3. Phys. Rev. B 98, 144411 (2018).CrossRefGoogle Scholar
Wu, Z., Yu, J., and Yuan, S.: Strain-tunable magnetic and electronic properties of monolayer CrI3. Phys. Chem. Chem. Phys. 21, 7750 (2019).CrossRefGoogle ScholarPubMed
Butov, L.V., Lai, C.W., Ivanov, A.L., Gossard, A.C., and Chemla, D.S.: Towards Bose–Einstein condensation of excitons in potential traps. Nature 417, 47 (2002).CrossRefGoogle ScholarPubMed
High, A.A., Leonard, J.R., Hammack, A.T., Fogler, M.M., Butov, L.V., Kavokin, A.V., Campman, K.L., and Gossard, A.C.: Spontaneous coherence in a cold exciton gas. Nature 483, 584 (2012).CrossRefGoogle Scholar
Zhang, C., Li, M.Y., Tersoff, J., Han, Y., Su, Y., Li, L.J., Muller, D.A., and Shih, C.K.: Strain distributions and their influence on electronic structures of WSe2-MoS2 laterally strained heterojunctions. Nat. Nanotechnol 13, 152 (2018).CrossRefGoogle ScholarPubMed