Skip to main content Accessibility help

Hetero-epitaxy of high quality germanium film on silicon substrate for optoelectronic integrated circuit applications

  • Kwang Hong Lee (a1), Shuyu Bao (a2), Yiding Lin (a2), Wei Li (a3), P Anantha (a3), Lin Zhang (a3), Yue Wang (a1), Jurgen Michel (a4), Eugene A. Fitzgerald (a4) and Chuan Seng Tan (a2)...


Integration of photonic devices on silicon (Si) substrates is a key method in enabling large scale manufacturing of Si-based photonic–electronic circuits for next generation systems with high performance, small form factor, low power consumption, and low cost. Germanium (Ge) is a promising material due to its pseudo-direct bandgap and its compatibility with Si-CMOS processing. In this article, we present our recent progress on achieving high quality germanium-on-silicon (Ge/Si) materials. Subsequently, the performance of various functional devices such as photodetectors, lasers, waveguides, and sensors that are fabricated on the Ge/Si platform are discussed. Some possible future works such as the incorporation of tin (Sn) into Ge will be proposed. Finally, some applications based on a fully monolithic integrated photonic–electronic chip on an Si platform will be highlighted at the end of this article.


Corresponding author

a) Address all correspondence to these authors. e-mail:
b) e-mail:


Hide All

Contributing Editor: Mmantsae Diale



Hide All
1. Sze, S.M. and Lee, M.K.: Semiconductor Devices: Physics and Technology, 3rd ed. (Wiley, New York, USA, 2012).
2. Semiconductor Industry Association (2013). Available at: (accessed 5 February 2017).
3. World Semiconductor Trade Statistic (2013). Available at: http// (accessed 5 February 2017).
4. International Technology Roadmap for Semiconductors (2012). Available at: http://www/
6. Moore, G.E.: Cramming more components onto integrated circuits. Electronics 38(8), 114 (1965).
7. Greiling, P.: The historical development of GaAs FET digital IC technology. IEEE Trans. Microwave Theory Tech. 32(9), 1144 (1984).
8. Hirayama, M., Togashi, M., Kato, N., Suzuki, M., Matsuoka, Y., and Kawasaki, Y.: A GaAs 16-kbit static RAM using dislocation-free crystal. IEEE Trans. Electron Devices 33(1), 104 (1986).
9. Taur, Y. and Ning, T.H.: Fundamentals of Modern VLSI Devices, 2nd ed. (Cambridge University Press, Cambridge, England, 2013).
10. Cisco Visual Networking Index: Forecast and Methodology (2013). Available at: http://www/ (accessed 5 February 2017).
11. Lannoo, B.: Overview of ICT energy consumption. Available at: (accessed 5 February 2017).
12. Klein, T.E.: Sustainable ICT Networks: The GreenTouch Vision. Green Research at Alcatel-Lucent. Available at: (accessed 5 February 2017).
13. Kimerling, L.C.: Microphotonics: The Next Platform for the Information Age. Available at: (accessed 5 February 2017).
14. Soref, R.A.: The past, present and future of silicon photonics. IEEE J. Sel. Top. Quantum Electron. 12(6), 1678 (2006).
15. Kirchain, R. and Kimerling, L.C.: A roadmap for nanophotonics. Nat. Photonics 1, 303 (2007).
16. Tsybeskov, L., Lockwood, D.J., and Ichikawa, M.: Silicon photonics: CMOS going optical. Proc. IEEE 97(7), 1161 (2009).
17. Geis, M.W., Spector, S.J., Grein, M.E., Yoon, J.U., Lennon, D.M., and Lyszczarz, T.M.: Silicon waveguide infrared photodiodes with >35 GHz bandwidth and phototransistors with 50 AW-1 response. Opt. Express 17(7), 5193 (2009).
18. Souhan, B., Grote, R.R., Driscoll, J.B., Lu, M., Stein, A., Bakhru, H., and Osgood, R.M.: Metal-semiconductor-metal ion-implanted Si waveguide photodetectors for C-band operation. Opt. Express 22(8), 9150 (2014).
19. Liu, A., Liao, L., Rubin, D., Nguyen, H., Ciftciogulu, B., Chetrit, Y., Izhaky, N., and Paniccia, M.: High-speed optical modulation based on carrier depletion in a silicon waveguide. Opt. Express 15(2), 660 (2007).
20. Green, W.M.J., Rooks, M.J., Sekaric, L., and Vlasov, Y.A.: Ultra-compact, low RF power, 10 Gb/s silicon Mach–Zehnder modulator. Opt. Express 15(25), 17106 (2007).
21. Cheng, K.Y., Anthony, R., Kortshagen, U.R., and Holmes, R.J.: High-efficiency silicon nanocrystal light-emitting devices. Nano Lett. 11(5), 1952 (2011).
22. Zimmermann, H.: Integrated Silicon Optoelectronics, 2nd ed. (Springer-Verlag, Berlin, Germany, 2000).
23. Reed, G.T.: Silicon Photonics: The State of the Art, 1st ed. (Wiley, New York, USA, 2008).
24. Pavesi, L. and Guillot, G.: Optical Interconnects: The Silicon Approach, 1st ed. (Springer-Verlag, Berlin, Germany, 2006).
25. Miller, D.A.B.: Device requirements for optical interconnects to silicon chips. Proc. IEEE 97(7), 1166 (2009).
26. Vivien, L. and Pavesi, L.: Handbook of Silicon Photonics, 1st ed. (Taylor and Francis, London, England, 2013).
27. Arakawa, Y., Nakamura, T., and Urino, Y.: Silicon photonics for next generation system integration platform. IEEE Commun. Mag. 51(3), 72 (2013).
28. Lee, A., Liu, H., and Seeds, A.: Semiconductor III–V lasers monolithically grown on Si substrates. Semicond. Sci. Technol. 28(1), 015207 (2013).
29. Gunn, C.: CMOS photonics for high-speed interconnects. IEEE Micro 26(2), 58 (2006).
30. Lee, K.H., Bao, S., Fitzgerald, E., and Tan, C.S.: Integration of III–V materials and Si-CMOS through double layer transfer process. Jpn. J. Appl. Phys. 54(3), 030209 (2015).
31. Lee, K.H., Bao, S., Zhang, L., Kohen, D., Fitzgerald, E., and Tan, C.S.: Integration of GaAs, GaN, and Si-CMOS on a common 200 mm Si substrate through multilayer transfer process. Appl. Phys. Express 9(8), 086501 (2016).
32. Wada, K. and Kimerling, L.C.: Photonics and Electronics with Germanium, 1st ed. (Wiley, Verlag GmbH & Co. KGaA, Germany, 2015).
33. Newman, R.: Optical studies of injected carriers. II. Recombination radiation in germanium. Phys. Rev. 91(6), 1313 (1953).
34. Hayne, J.R.: New radiation resulting from recombination of holes and electrons in germanium. Phys. Rev. 98(6), 1866 (1955).
35. Zhang, Q., Huang, J., Wu, N., Chen, G., Hong, M., Bera, L.K., and Zhu, C.: Drive-current enhancement in Ge n-channel MOSFET using laser annealing for source/drain activation. IEEE Electron Device Lett. 27(9), 728 (2006).
36. Feng, J., Woo, R., Chen, S., Liu, Y., Griffin, P.B., and Plummer, J.D.: P-Channel germanium FinFET based on rapid melt growth. IEEE Electron Device Lett. 28(7), 637 (2007).
37. Feng, J., Thareja, G., Kobayashi, M., Chen, S., Poon, A., Bai, Y., Griffin, P.B., Wong, S.S., Nishi, Y., and Plummer, J.D.: High-performance gate-all-around GeOI p-MOSFETs fabricated by rapid melt growth using plasma nitridation and ALD Al2O3 gate dielectric and self-aligned NiGe contacts. IEEE Electron Device Lett. 29(7), 805 (2008).
38. Madelung, O.: Physics of Group IV Elements and III–V Compounds, 1st ed. (Springer-Verlag, Berlin, Germany, 1982).
39. Liu, J., Sun, X., Kimerling, L.C., and Michel, J.: Direct-gap optical gain of Ge on Si at room temperature. Opt. Lett. 34(11), 1738 (2009).
40. Camacho-Aguilera, R.E., Cai, Y., Patel, N., Bessette, J.T., Romagnoli, M., Kimerling, L.C., and Michel, J.: An electrically pumped germanium laser. Opt. Express 20(10), 11316 (2012).
41. Koerner, R., Oehme, M., Gollhofer, M., Schmid, M., Kostecki, K., Bechler, S., Widmann, D., Kasper, E., and Schulze, J.: Electrically pumped lasing from Ge Fabry–Perot resonators on Si. Opt. Express 23(11), 14815 (2015).
42. Komiyama, S., Lizuka, N., and Akasaka, Y.: Evidence for induced far-infrared emission from p-Ge in crossed electric and magnetic fields. Appl. Phys. Lett. 47(9), 958 (2016).
43. Shang, H., Okorn-schimdt, H., Ott, J., Kozlowski, P., Steen, S., Jones, E.C., Wong, H.S.P., and Hanesch, W.: Electrical characterization of germanium p-channel MOSFETs. IEEE Electron. Dev. Lett. 24(4), 242 (2003).
44. Fathpour, S.: Emerging heterogeneous integrated photonic platforms on silicon. Nanophotonics 4(1), 143 (2015).
45. Kohen, D., Bao, S., Lee, K.H., Lee, K.E.K., Tan, C.S., Yoon, S.F., and Fitzgerald, E.A.: The role of AsH3 partial pressure on anti-phase boundary in GaAs-on-Ge grown by MOCVD—Application to a 200 mm GaAs virtual substrate. J. Cryst. Growth 421, 58 (2015).
46. Kohen, D., Nguyen, X.S., Yadav, S., Kumar, A., Made, R.I., Heidelberger, C., Gong, X., Lee, K.H., Lee, K.E.K., Yeo, Y.C., Yoon, S.F., and Fitzgerald, E.A.: Heteroepitaxial growth of In0.30Ga0.70As high-electron mobility transistor on 200 mm silicon substrate using metamorphic graded buffer. AIP Adv. 6(8), 085106 (2016).
47. Fitzgerald, E.A., Xie, Y.H., Green, M.L., Brasen, D., Kortan, A.R., Michel, J., Mi, Y.J., and Weir, B.E.: Totally relaxed Ge x Si1−x layers with low threading dislocation densities grown on Si substrates. Appl. Phys. Lett. 59(7), 811 (2010).
48. Shah, V.A., Dobbie, A., Myronov, M., and Leadley, D.R.: Reverse graded SiGe/Ge/Si buffers for high-composition virtual substrates. Appl. Phys. Lett. 107(6), 064304 (2010).
49. Curie, M.T., Samvedam, S.B., Langdo, T.A., Leitz, C.W., and Fitzgerald, E.A.: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72, 1718 (1998).
50. Liu, J.L., Tong, S., Luo, Y.H., and Wang, K.L.: High-quality Ge films on Si substrates using Sb surfactant-mediated graded SiGe buffers. Appl. Phys. Lett. 79(21), 3431 (2001).
51. Luryi, S., Kastalsky, A., and Bean, J.C.: Infrared detector on a silicon chip. IEEE Trans. Electron Devices 31(9), 1135 (1984).
52. Curie, M.T., Samvedam, S.B., Langdo, T.A., Leitz, C.W., and Fitzgerald, E.A.: Controlling threading dislocation densities in Ge on Si using graded SiGe layers and chemical-mechanical polishing. Appl. Phys. Lett. 72(14), 1718 (1998).
53. Hartmann, J.M., Sanchez, L., Van Den Daele, W., Abbadie, A., Baud, L., Truche, R., Augendre, E., Clavelier, L., Cherkashin, N., Hytch, M., and Cristoloveanu, S.: Fabrication, structural and electrical properties of compressively strained Ge-on-insulator substrates. Semicond. Sci. Technol. 25(7), 075010 (2010).
54. Jain, N.: Heterogeneous integration of III–V multijunction solar cells on Si substrate: Cell design & modeling, epitaxial growth & fabrication. Doctoral thesis, Virginia Polytechnic Institute and State University, USA, 2015.
55. Nakatsuru, J., Date, H., Mashiro, S., and Ikemoto, M.: Growth of high quality Ge epitaxial layer on Si (100) substrate using ultra thin Si0.5Ge0.5 buffer. MRS Online Proc. Libr. 891, EE07-24 (2005).
56. Langdo, T.A., Leitz, C.W., Curie, M.T., and Fitzgerald, E.A.: High quality Ge on Si by epitaxial necking. Appl. Phys. Lett. 76(25), 3700 (2000).
57. Bai, J., Park, J.S., Cheng, Z., Curtin, M., Adekore, B., Carroll, M., and Lochtefeld, A.: Study of the defect elimination mechanisms in aspect ratio trapping Ge growth. Appl. Phys. Lett. 90(10), 101902 (2007).
58. Ren, S., Rong, Y., Kamins, T.I., Harris, J.S., and Miller, D.A.B.: Selective epitaxial growth of Ge/Si0.15Ge0.85 quantum wells on Si substrate using reduced pressure chemical vapor deposition. Appl. Phys. Lett. 98(15), 151108 (2011).
59. Fiorenza, J.G., Park, J.S., Hydrick, J.M., Li, J., Li, J.Z., Curtin, M., Carroll, M., and Lochtefeld, A.: Aspect ratio trapping: A unique technology for integrating Ge and III–Vs with silicon CMOS. ECS Trans. 33(6), 963 (2010).
60. Colace, L., Masini, G., Galluzzi, F., Assanto, G., Capellini, G., Gaspare, L.D., Palange, E., and Evangelisti, F.: Metal–semiconductor–metal near-infrared light detector based on epitaxial Ge/Si. Appl. Phys. Lett. 72(24), 3175 (1998).
61. Hartmann, J.M., Abbadie, A., Papon, A.M., Holliger, P., Rolland, G., Billon, T., Fedeli, J.M., Rouviere, M., Vivien, L., and Laval, S.: Reduced pressure–chemical vapor deposition of Ge thick layers on Si(001) for 1.3–1.55-μm photodetection. J. Appl. Phys. 95(10), 5905 (2004).
62. Luan, H.C., Lim, D.R., Lee, K.K., Cheng, K.M., Sandland, J.G., Wada, K., and Kimerling, L.C.: High-quality Ge epilayers on Si with low threading-dislocation densities. Appl. Phys. Lett. 75(19), 2909 (1999).
63. Nayfeh, A., Chui, C.O., and Saraswat, K.C.: Effects of hydrogen annealing on heteroepitaxial-Ge layers on Si: Surface roughness and electrical quality. Appl. Phys. Lett. 85(14), 2815 (2004).
64. Tan, Y.H. and Tan, C.S.: Growth and characterization of germanium epitaxial film on silicon (001) using reduced pressure chemical vapor deposition. Thin Solid Films 520(7), 2711 (2012).
65. Lee, K.H., Tan, Y.H., Jandl, A., Fitzgerald, E.A., and Tan, C.S.: Comparative studies of the growth and characterization of germanium epitaxial film on silicon (001) with 0° and 6° offcut. J. Electron. Mater. 42(6), 1133 (2013).
66. Lee, K.H., Jandl, A., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Growth and characterization of germanium epitaxial film on silicon (001) with germane precursor in metal organic chemical vapour deposition (MOCVD) chamber. AIP Adv. 3(9), 092123 (2013).
67. Masafumi, Y., Chikara, A., and Yoshio, I.: Numerical analysis for high-efficiency GaAs solar cells fabricated on Si substrates. J. Appl. Phys. 66(2), 915 (1989).
68. Masafumi, Y. and Chikara, A.: Efficiency calculations of thin-film GaAs solar cells on Si substrates. J. Appl. Phys. 58(9), 3601 (1985).
69. Ginige, R., Corbett, B., Modreanu, M., Barrett, C., Hilgarth, J., Isella, G., Chrastina, D., and von Känel, H.: Characterization of Ge-on-Si virtual substrates and single junction GaAs solar cells. Semicond. Sci. Technol. 21(6), 775780 (2006).
70. Lee, K.H., Bao, S., Chong, G.Y., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Fabrication and characterization of germanium-on-insulator through epitaxy, bonding, and layer transfer. J. Appl. Phys. 116(10), 103506 (2014).
71. Lee, K.H., Bao, S., Chong, G.Y., Tan, Y.H., Fitzgerald, E.A., and Tan, C.S.: Defects reduction of Ge epitaxial film in a germanium-on-insulator wafer by annealing in oxygen ambient. APL Mater. 3(1), 016102 (2015).
72. Lee, K.H., Bao, S., Wang, B., Wang, C., Yoon, S.F., Michel, J., Fitzgerald, E.A., and Tan, C.S.: Reduction of threading dislocation density in Ge/Si using a heavily As-doped Ge seed layer. AIP Adv. 6(2), 025028 (2016).
73. Cai, F., Dong, Y., Tan, Y.H., Tan, C.S., and Xia, G.: Enhanced Si–Ge interdiffusion in high phosphorus-doped germanium on silicon. Semicond. Sci. Technol. 30(10), 105008 (2015).
74. Jung, K.H., Hsieh, T.Y., Kwong, D.L., Liu, H.Y., and Brennan, R.: In situ doping of Ge x Si1−x with arsenic by rapid thermal processing chemical vapor deposition. Appl. Phys. Lett. 60(6), 724 (1992).
75. Huang, Z., Oh, J., Banerjee, S.K., and Campbell, J.C.: Effectiveness of SiGe buffer layers in reducing dark currents of Ge-on-Si photodetectors. IEEE J. Quantum Electron. 43(3), 238 (2007).
76. DiLello, N.A., Johnstone, D.K., and Hoyt, J.L.: Characterization of dark current in Ge-on-Si photodiodes. J. Appl. Phys. 112(5), 054506 (2012).
77. Liu, J., Michel, J., Giziewicz, W., Pan, D., Wada, K., Cannon, D.D., Jongthammanurak, S., Danielson, D.T., Kimerling, L.C., Chen, J., Llday, F.O., Kartner, F.X., and Yasaitis, J.: High-performance, tensile-strained Ge p-i-n photodetectors on a Si platform. Appl. Phys. Lett. 87(10), 103501 (2005).
78. Liu, J., Cannon, D.D., Wada, K., Ishikawa, Y., Jongthammanurak, S., Danielson, D.T., Michel, J., and Kimerling, L.C.: Tensile strained Ge p-i-n photodetectors on Si platform for C and L band telecommunications. Appl. Phys. Lett. 87(1), 011110 (2005).
79. Dehlinger, G., Koester, S.J., Schaub, J.D., Chu, J.O., Quyang, Q.C., and Grill, A.: High-speed germanium-on-SOI lateral PIN photodiodes. IEEE Photon. Technol. Lett. 16(11), 2547 (2004).
80. Ahn, D., Hong, C.Y., Liu, J., Giziewicz, W., Beals, M., Kimerling, L.C., Michel, J., Chen, J., and Kartner, F.Z.: High performance, waveguide integrated Ge photodetectors. Opt. Express 15(7), 3916 (2007).
81. Vivien, L., Osmond, J., Fedeli, J-M., Marris-Morini, D., Crozat, P., Damlencourt, J-F., Cassan, E., Lecunff, Y., and Laval, S.: 42 GHz pin Ge photodetector integrated on SOI waveguide. Opt. Express 17(8), 6252 (2009).
82. Feng, D., Liao, S., Dong, P., Feng, N.N., Liang, H., Zheng, D., Kung, C., Fong, J., Shafiiha, R., Cunningham, J., Krishnamoorthy, A.V., and Asghari, M.: High-speed Ge photodetector monolithically integrated with large cross-section silicon-on-insulator waveguide. Appl. Phys. Lett. 95(26), 261105 (2009).
83. Virot, L., Vivien, L., Fédéli, J-M., Bogumilowicz, Y., Hartmann, J-M., Bœuf, F., Crozat, P., Marris-Morini, D., and Cassan, E.: High-performance waveguide-integrated germanium PIN photodiodes for optical communication applications. Photonics Res. 1(3), 140 (2013).
84. Yin, T., Cohen, R., Morse, M.M., Sarid, G., Chetrit, Y., Rubin, D., and Paniccia, M.J.: 31 GHz Ge n-i-p waveguide photodetectors on silicon-on-insulator substrate. Opt. Express 15(21), 13965 (2007).
85. Vivien, L., Polzer, A., Marris-Morini, D., Osmond, J., Hartmann, J.M., Crozat, P., Cassan, E., Kopp, C., Zimmermann, H., and Fédéli, J.M.: Zero-bias 40 Gbit/s germanium waveguide photodetector on silicon. Opt. Express 20(2), 1096 (2012).
86. Wang, J., Loh, W.Y., Chua, K.T., Zang, H., Xiong, Y.Z., Loh, T.H., Yu, M.B., Lee, S.J., Lo, G.Q., and Kwong, D.L.: Evanescent-coupled Ge p-i-n photodetectors on Si-waveguide with SEG-Ge and comparative study of lateral and vertical p-i-n configurations. IEEE Electron Device Lett. 29(5), 445 (2008).
87. Colace, L., Balbi, M., Masini, G., Assanto, G., Luan, H-C., and Kimerling, L.C.: Ge on Si p-i-n photodiodes operating at 10 Gbit/s. Appl. Phys. Lett. 88(10), 101111 (2006).
88. Suh, D., Kim, S., Joo, J., and Kim, G.: 36-GHz high-responsivity Ge photodetectors grown by RPCVD. IEEE Photon. Technol. Lett. 21(10), 672 (2009).
89. Colace, L., Masini, G., Assanto, G., Luan, H., Wada, K., and Kimerling, L.C.: Efficient high-speed near-infrared Ge photodetectors integrated on Si substrates. Appl. Phys. Lett. 76(10), 1231 (2000).
90. Klinger, M.B.S., Kaschel, M., Oehme, M., and Kasper, E.: Ge-on-Si p-i-n photodiodes with a 3-dB bandwidth of 49 GHz. IEEE Photon. Technol. Lett. 21(13), 920 (2009).
91. Zhou, Z., He, J., Wang, R., Li, C., and Yu, J.: Normal incidence p-i-n Ge heterojunction photodiodes on Si substrate grown by ultrahigh vacuum chemical vapor deposition. Opt. Commun. 283(18), 3404 (2010).
92. Li, C., Xue, C., Liu, Z., Cheng, B., Li, C., and Wang, Q.: High-bandwidth and high-responsivity top-illuminated germanium photodiodes for optical interconnection. IEEE Trans. Electron Devices 60(3), 1183 (2013).
93. Jalali, B. and Fathpour, S.: Silicon photonics. J. Lightwave Technol. 24(12), 4600 (2006).
94. Liu, J.F., Sun, X., Pan, D., Wang, X.X., Kimerling, L.C., Koch, T.L., and Michel, J.: Tensile-strained n-type Ge as a gain medium for monolithic laser integration on Si. Opt. Express 15(18), 11272 (2007).
95. Soref, R.A. and Friedman, L.: Direct gap Ge/GeSn/Si and GeSn/Ge/Si heterostructures. Superlattices Microstruct. 14(2), 189 (1993).
96. El Kurdi, M., Fishman, G., Sauvage, S., and Boucaud, P.: Band structure and optical gain of tensile-strained germanium based on a 30 band k·p formalism. J. Appl. Phys. 107(1), 013710 (2010).
97. Reboud, V., Gassenq, A., Hartmann, J.M., Widiez, J., Virot, L., Aubin, J., Guilloy, K., Tardif, S., Fédéli, J.M., Pauc, N., Chelnokov, A., and Calvo, V.: Germanium based photonic components toward a full silicon/germanium photonic platform. Prog. Cryst. Growth Charact. Mater. 63(2), 1 (2017).
98. Nam, D., Sukhdeo, D.S., Kang, J-H., Petykiewicz, J., Lee, J.H., Jung, W.S., Vučković, J., Brongersma, M.L., and Saraswat, K.C.: Strain-induced pseudoheterostructure nanowires confining carriers at room temperature with nanoscale-tunable band profiles. Nano Lett. 13(7), 3118 (2013).
99. Zabel, T., Marin, E., Geiger, R., Bozon, C., Tardif, S., Guilloy, K., Gassenq, A., Escalante, J., Niquet, Y.M., Duchemin, I., Rothman, J., Pauc, N., Rieutord, F., Reboud, V., Calvo, V., Hartmann, J.M., Widiez, J., Tchelnokov, A., Faist, J., and Sigg, H.: Highly strained direct bandgap germanium cavities for a monolithic laser on Si. Presented at the IEEE International Conference on Group IV Photonics GFP 7739082, IEEE, Shanghai, China, 2016.
100. Gassenq, A., Tardif, S., Guilloy, K., Duchemin, I., Pauc, N., Hartmann, J.M., Rouchon, D., Widiez, J., Niquet, Y.M., Milord, L., Zabel, T., Sigg, H., Faist, J., Chelnokov, A., Rieutord, F., Reboud, V., and Calvo, V.: Raman-strain relations in highly strained Ge: Uniaxial 〈100〉, 〈110〉 and biaxial (001) stress. J. Appl. Phys. 121(5), 055702 (2017).
101. Kang, J., Takenaka, M., and Takagi, S.: Novel Ge waveguide platform on Ge-on-insulator wafer for mid-infrared photonic integrated circuits. Opt. Express 24(11), 11855 (2016).
102. Soref, R.A., Emelett, S.J., and Buchwald, W.R.: Silicon waveguided components for the long-wave infrared region. J. Opt. A: Pure Appl. Opt. 8(10), 840 (2006).
103. Nedeljkovic, M., Penadés, J.S., Mitchell, C.J., Khokhar, A.Z., Stanković, S., Bucio, T.D., Littlejohns, C.G., Gardes, F.Y., and Mashanovich, G.Z.: Surface-grating-coupled low-loss Ge-on-Si rib waveguides and multimode interferometers. IEEE Photon. Technol. Lett. 27(10), 1040 (2015).
104. Yalcin, A., Popat, K.C., Aldridge, J.C., Desai, T.A., Hryniewicz, J., Chbouki, N., Little, B.E., King, O., Van, V., and Chu, S.: Optical sensing of biomolecules using microring resonator. IEEE J. Sel. Top. Quantum Electron. 12(1), 148 (2006).
105. Xu, Q., Fattal, D., and Beausoleil, R.G.: Silicon microring resonators with 1.5-µm radius. Opt. Express 16(6), 4309 (2008).
106. Vlasov, Y. and McNab, S.: Losses in single-mode silicon-on-insulator strip waveguides and bends. Opt. Express 12(8), 1622 (2004).
107. Li, G., Yao, J., Thacker, H., Mekis, A., Zheng, X., Shubin, I., Luo, Y., Lee, J-H., Raj, K., and Cunningham, J.E.: Ultralow-loss, high-density SOI optical waveguide routing for macrochip interconnects. Opt. Express 20(11), 12035 (2012).
108. Soref, R.: Mid-infrared photonics in silicon and germanium. Nat. Photonics 4(8), 495 (2010).
109. Lavchiev, V.M. and Jakoby, B.: Photonics in the mid-infrared: Challenges in single-chip integration and absorption sensing. IEEE J. Sel. Top. Quantum Electron. 23(2), 1 (2017).
110. Sieger, M. and Mizaikoff, B.: Toward on-chip mid-infrared sensors. Anal. Chem. 88(11), 5562 (2016).
111. Sieger, M., Balluff, F., Wang, X., Kim, S-S., Leidner, L., Gauglitz, G., and Mizaikoff, B.: On-chip integrated mid-infrared GaAs/AlGaAs Mach–Zehnder interferometer. Anal. Chem. 85(6), 3050 (2013).
112. Chang, Y-C., Wägli, P., Paeder, V., Homsy, A., Hvozdara, L., van der Wal, P., Di Francesco, J., de Rooij, N.F., and Peter Herzig, H.: Cocaine detection by a mid-infrared waveguide integrated with a microfluidic chip. Lab Chip 12(17), 3020 (2012).
113. Hu, J., Tarasov, V., Agarwal, A., Kimerling, L., Carlie, N., Petit, L., and Richardson, K.: Fabrication and testing of planar chalcogenide waveguide integrated microfluidic sensor. Opt. Express 15(5), 2307 (2007).
114. Coates, J.: Interpretation of infrared spectra, a practical approach. In Encyclopedia of Analytical Chemistry (John Wiley & Sons, 2006).
115. Li, W., Anantha, P., Bao, S., Lee, K.H., Guo, X., Hu, T., Zhang, L., Wang, H., Soref, R., and Tan, C.S.: Germanium-on-silicon nitride waveguides for mid-infrared integrated photonics. Appl. Phys. Lett. 109(24), 241101 (2016).
116. Capellini, G., Kozlowski, G., Yamamoto, Y., Lisker, M., Wenger, C., Niu, G., Zaumseil, P., Tillack, B., Ghrib, A., Kersauson, M., Kurdi, M.E., Boucaud, P., and Schroeder, T.: Strain analysis in SiN/Ge microstructures obtained via Si-complementary metal oxide semiconductor compatible approach. J. Appl. Phys. 113(1), 013513 (2013).
117. Ghrib, A., Kurdi, M., Prost, M., Sauvage, S., Checoury, X., Beaudoin, G., Chaigneau, M., Ossikovski, R., Sagnes, I., and Boucaud, P.: All-around SiN stressor for high and homogeneous tensile strain in germanium microdisk cavities. Adv. Opt. Mater. 3(3), 353 (2015).
118. D’Costa, V.R., Cook, C.S., Birdwell, A.G., Littler, C.L., Canonico, M., Zollner, S., Kouvetakis, J., and Menéndez, J.: Optical critical points of thin-film Ge1−y Sn y alloys: A comparative Ge1−y Sn y /Ge1−x Si x study. Phys. Rev. B: Condens. Matter Mater. Phys. 73(12), 125207 (2006).
119. Chen, R., Lin, H., Huo, Y., Hitzman, C., Kamins, T.I., and Harris, J.S.: Increased photoluminescence of strain-reduced, high-Sn composition Ge1−x Sn x alloys grown by molecular beam epitaxy. Appl. Phys. Lett. 99(11), 181125 (2011).
120. Liu, J.: Monolithically integrated Ge-on-Si active photonics. Photonics 1(3), 162 (2014).
121. Wirths, S., Buca, D., and Mantl, S.: Si–Ge–Sn alloys: From growth to applications. Prog. Cryst. Growth Charact. Mater. 62(1), 1 (2016).
122. Wirths, S., Geiger, R., Driesch, N.V.D., Mussler, G., Stoica, T., Mantl, S., Ikonic, Z., Luysberg, M., Chiussi, S., Hartmann, J.M., Sigg, H., Faist, J., Buca, D., and Grutzmacher, D.: Lasing in direct-bandgap GeSn alloy grown on Si. Nat. Photon. Lett. 9, 88 (2015).
123. Su, S., Cheng, B., Xue, C., Wang, W., Cao, Q., Xue, H., Hu, W., Zhang, G., Zuo, Y., and Wang, Q.: GeSn p-i-n photodetector for all telecommunication bands detection. Opt. Express 19(7), 6400 (2011).
Recommend this journal

Email your librarian or administrator to recommend adding this journal to your organisation's collection.

Journal of Materials Research
  • ISSN: 0884-2914
  • EISSN: 2044-5326
  • URL: /core/journals/journal-of-materials-research
Please enter your name
Please enter a valid email address
Who would you like to send this to? *



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed