Skip to main content Accessibility help

Heteroepitaxy of distorted rutile-structure WO2 and NbO2 thin films

  • Franklin J. Wong (a1) and Shriram Ramanathan (a1)


We present an experimental study on the epitaxy and orientational relationships of WO2 and NbO2 films on (0001) Al2O3, (111) MgAl2O4, and (111) MgO substrates, as well as WO2 on (111) SrTiO3. The higher symmetry of the substrate planes compared to the film planes leads to the formation of epitaxial structural variants, and they are related by the surface rotational symmetry elements of the substrates. WO2 and NbO2 crystallize in distorted versions of the rutile structure, and we discuss our findings in context of the rutile unit cell. Our results are applicable to other compounds that occur in (distorted) rutile structures. For the case of NbO2 thin films, we also demonstrate that they can be grown epitaxially on (10 $\bar 1$ 2) and (10 $\bar 1$ 0) Al2O3, lower symmetry surfaces; in these cases, surface symmetry does not induce the formation of epitaxial rotational variants, though domains related by glide symmetry are possible.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Hotsenpiller, P.A.M., Wilson, G.A., Roshko, A., Rothman, J.B., and Rohrer, G.S.: Heteroepitaxial growth of TiO2 films by ion-beam sputter deposition. J. Cryst. Growth 166(1–4), 779 (1996).
2.Chen, S., Mason, M.G., Gysling, H.J., Pazpujalt, G.R., Blanton, T.N., Castro, T., Chen, K.M., Fictorie, C.P., Gladfelter, W.L., Franciosi, A., Cohen, P.I., and Evans, J.F.: Ultrahigh-vacuum metalorganic chemical-vapor-deposition growth and in-situ characterization of epitaxial TiO2 films. J. Vac. Sci. Technol., A 11(5), 2419 (1993).
3.Gao, Y., Thevuthasan, S., McCready, D.E., and Engelhard, M.: MOCVD growth and structure of Nb- and V-doped TiO2 films on sapphire. J. Cryst. Growth 212(1–2), 178 (2000).
4.Flynn, C.P. and Eades, J.A.: Structural variants in heteroepitaxial growth. Thin Solid Films 389(1–2), 116 (2001).
5.Grundmann, M.: Formation of epitaxial domains: Unified theory and survey of experimental results. Phys. Status Solidi B 248(4), 805 (2011).
6.Wu, Z.P., Yamamoto, S., Miyashita, A., Zhang, Z.J., Narumi, K., and Naramoto, H.: Single-crystalline epitaxy and twinned structure of vanadium dioxide thin film on (0001) sapphire. J. Phys. Condens. Matter 10(48), L765 (1998).
7.Zhou, H., Chisholm, M.F., Yang, T.H., Pennycook, S.J., and Narayan, J.: Role of interfacial transition layers in VO2/Al2O3 heterostructures. J. Appl. Phys. 110(7), 073515 (2011).
8.Wong, F.J., Zhou, Y., and Ramanathan, S.: Epitaxial variants of VO2 thin films on complex oxide single crystal substrates with 3m surface symmetry. J. Cryst. Growth 364, 74 (2013).
9.Yang, Z. and Ramanathan, S.: Direct measurement of compositional complexity-induced electronic inhomogeneity in VO2 thin films grown on gate dielectrics. Appl. Phys. Lett. 98(19), 192113 (2011).
10.Engel-Herbert, R., Jalan, B., Cagnon, J., and Stemmer, S.: Microstructure of epitaxial rutile TiO2 films grown by molecular beam epitaxy on r-plane Al2O3. J. Cryst. Growth 312(1), 149 (2009).
11.Dominguez, J.E., Fu, L., and Pan, X.Q.: Epitaxial nanocrystalline tin dioxide thin films grown on (0001) sapphire by femtosecond pulsed laser deposition. Appl. Phys. Lett. 79(5), 614 (2001).
12.Pan, X.Q., Fu, L., and Dominguez, J.E.: Structure-property relationship of nanocrystalline tin dioxide thin films grown on ( $\bar 1$012) sapphire. J. Appl. Phys. 89(11), 6056 (2001).
13.Zhao, Y., Lee, J.H., Zhu, Y.H., Nazari, M., Chen, C.H., Wang, H.Y., Bernussi, A., Holtz, M., and Fan, Z.Y.: Structural, electrical, and terahertz transmission properties of VO2 thin films grown on c-, r-, and m-plane sapphire substrates. J. Appl. Phys. 111(5), 053533 (2012).
14.Yang, T.H., Aggarwal, R., Gupta, A., Zhou, H.H., Narayan, R.J., and Narayan, J.: Semiconductor-metal transition characteristics of VO2 thin films grown on c- and r-sapphire substrates. J. Appl. Phys. 107(5), 053514 (2010).
15.Kawakubo, T. and Nakagawa, T.: Phase transition in VO2. J. Phys. Soc. Jpn. 19(4), 517 (1964).
16.Goodenough, J.B.: Direct cation–cation interactions in several oxides. Phys. Rev. 117(6), 1442 (1960).
17.Andersson, G.: Studies on vanadium oxides. 2. The crystal structure of vanadium dioxide. Acta Chem. Scand. 10(4), 623 (1956).
18.Palmer, D.J. and Dickens, P.G.: Tungsten dioxide - structure refinement by powder neutron-diffraction. Acta Crystallogr., Sect. B: Struct. Sci. 35, 2199 (1979). (PDF 01-071-0614).
19.Wriedt, H.A.: The O-W (oxygen-tungsten) system. Bulletin of Alloy Phase Diagrams 10, 368 (1989).
20.Colton, R.J. and Rabalais, J.W.: Electronic-structure of tungsten and some of its borides, carbides, nitrides, and oxides by x-ray electron spectroscopy. Inorg. Chem. 15(1), 236 (1976).
21.Katoh, M. and Takeda, Y.: Chemical state analysis of tungsten and tungsten oxides using an electron probe microanalyzer. Jpn. J. Appl. Phys. 43(10), 7292 (2004).
22.Khyzhun, O.Y.: XPS, XES and XAS studies of the electronic structure of tungsten oxides. J. Alloys Compd. 305(1–2), 1 (2000).
23.Sarma, D.D. and Rao, C.N.R.: XPES studies of oxides of 2nd-row and 3rd-row transition-metals including rare-earths. J. Electron Spectrosc. 20(1–2), 25 (1980).
24.Jones, F.H., Egdell, R.G., Brown, A., and Wondre, F.R.: Surface structure and spectroscopy of WO2(012). Surf. Sci. 374(1–3), 80 (1997).
25.Gulino, A., Parker, S., Jones, F.H., and Egdell, R.G.: Influence of metal-metal bonds on electron spectra of MoO2 and WO2. J. Chem. Soc., Faraday Trans. 92(12), 2137 (1996).
26.Sakata, T., Sakata, K., and Nishida, I.: Study of phase transition in NbO2. Phys. Status Solidi B 20(2), K155 (1967).
27.Bolzan, A.A., Fong, C., Kennedy, B.J., and Howard, C.J.: A powder neutron-diffraction study of semiconducting and metallic niobium dioxide. J. Solid State Chem. 113(1), 9 (1994). (PDF 01-082-1141).
28.Gannon, J.R. and Tilley, R.J.D.: Microstructure of slightly substoichiometric NbO2. J. Solid State Chem. 20(4), 331 (1977).
29.Vanlanduyt, J., Gevers, R., and Amelinckx, S.: Electron microscopic study of twins, anti-phase boundaries, and dislocations in thin films of rutile. Phys. Status Solidi B 7(1), 307 (1964).
30.Burdett, J.K.: Electronic control of the geometry of rutile and related structures. Inorg. Chem. 24(14), 2244 (1985).
31.Chang, H.L.M., You, H., Gao, Y., Guo, J., Foster, C.M., Chiarello, R.P., Zhang, T.J., and Lam, D.J.: Structural properties of epitaxial TiO2 films grown on sapphire (11 $\bar 2$0) by MOCVD. J. Mater. Res. 7(9), 2495 (1992).



Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed