Hostname: page-component-848d4c4894-p2v8j Total loading time: 0.001 Render date: 2024-05-13T14:03:33.326Z Has data issue: false hasContentIssue false

Haasen plot analysis of the Hall–Petch effect in Cu/Nb nanolayer composites

Published online by Cambridge University Press:  31 January 2011

M. F. Tambwe
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706
D. S. Stone
Affiliation:
Department of Materials Science and Engineering, University of Wisconsin at Madison, Madison, Wisconsin 53706
A. J. Griffin
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
H. Kung
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Y. Cheng
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
M. Nastasi
Affiliation:
Los Alamos National Laboratory, Los Alamos, New Mexico 87545
Get access

Abstract

We investigate the effects of layer thickness (t) on hardness (H) and rate sensitivity of the hardness (∂H/∂ ln ) in 1 μm-thick Cu/Nb nanolayer composites. For t < 10 nm, we find that H correlates with t according to H = H0 = H1t-1/2, suggestive of a Hall–Petch mechanism with layer interfaces replacing grain boundaries as barriers against dislocation motion. The measured levels of ∂H/∂ ln clearly indicate the operation of bulk-like dislocation mechanisms consistent with a Hall–Petch mechanism. However, based on a Haasen-plot activation analysis, it appears that the Hall–Petch coefficient, H1, is strongly rate-dependent, inconsistent with a conventional Hall–Petch mechanism. For specimens with t < 10 nm there is a saturation in hardness, but the rate sensitivity data indicate no clear evidence of a corresponding change in mechanism. Simple models are proposed.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Bunshah, R. F., Nimmagadda, R., Doerr, H. J., Movchan, B. A., Grechanuk, N. I., and Dabhizha, E. V., Thin Solid Films 72, 261 (1980).CrossRefGoogle Scholar
2.Cammarata, R. C., Schesinger, T. E., Kim, C., Qadri, S. B., and Eldestein, A. S., Appl. Phys. Lett. 56, 1862 (1990).CrossRefGoogle Scholar
3.Chou, T. C., Nieh, T. G., Tsui, T. Y., and Pharr, G. M., J. Mater. Res. 7, 2765 (1992).CrossRefGoogle Scholar
4.Daniels, B. J., Nix, W. D., and Clemens, B. M., in Structure and Properties of Multilayered Thin Films, edited by Nguyen, T.D., Lairson, B. M., Clemens, B. M., Shin, S-C., and Sato, K. (Mater. Res. Soc. Symp. Proc. 382, Pittsburgh, PA, 1995), p. 315.Google Scholar
5.English, G. R., Simenson, G. F., Clemens, B. M., and Nix, W.D., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Ross, C. A., Townsend, P. H., Volkert, C. A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 363.Google Scholar
6.Shinn, M. and Barnett, S. A., Appl. Phys. Lett. 64, 61 (1994).CrossRefGoogle Scholar
7.Mirkarimi, P. B., Barnett, S. A., Hubbard, K. M., Jervis, T. R., and Hultman, L., J. Mater. Res. 9, 1456 (1994).Google Scholar
8.Anderson, P. M. and Li, C., NanoStruct. Mater. 5, 349 (1995).Google Scholar
9.Oberle, R. R. and Cammarata, R. C., Scripta Metall. Mater. 32, 583 (1995).Google Scholar
10.Shih, K. K. and Dove, D. B., Appl. Phys. Lett. 61, 654 (1992).CrossRefGoogle Scholar
11.Lehoczky, S. L., Phys. Rev. Lett. 41, 1814 (1978).CrossRefGoogle Scholar
12.Koehler, J. S., Phys. Rev. B2, 547 (1970).CrossRefGoogle Scholar
13.Krzanowski, J. E., Scripta Metall. et Mater. 27, 1465 (1991).CrossRefGoogle Scholar
14.Cahn, J. W., Acta Metall. 11, 1274 (1963).CrossRefGoogle Scholar
15.Baral, D., Ketterson, J. B., and Hilliard, J. E., in Modulated Structure Materials, edited by Tsakalakos, T. (Nijhoff Publ., Dordrecht, 1984), p. 465.CrossRefGoogle Scholar
16.Mulford, R. A., Acta Metall. 27, 1115 (1979).CrossRefGoogle Scholar
17.Kocks, U. F., in Strength of Metals and Alloys, edited by Haasen, P., Gerold, V., and Kostorz, G. (Pergamon Press, London, 1980), Vol. 3, p. 1661.Google Scholar
18.Stone, D. S. and Yoder, K. B., J. Mater. Res. 9, 2524 (1994).CrossRefGoogle Scholar
19.Atkins, A. G., Sliverio, A., and Tabor, D., J. Inst. Metals 94, 369 (1966).Google Scholar
20.Kashyap, B. P. and Tangri, K., Acta Metall. Mater. 43, 3971 (1995).CrossRefGoogle Scholar
21.Armstrong, R. W., Metall. Trans. 1, 1169 (1970).CrossRefGoogle Scholar
22.Petch, N. J., Philos. Mag. 3, 1089 (1958).CrossRefGoogle Scholar
23.Conrad, H. and Schoeck, G., Acta Metall. 8, 791 (1960).CrossRefGoogle Scholar
24.Johnson, A. A., Acta Metall. 8, 737 (1960).CrossRefGoogle Scholar
25.Marcinkowski, M. J. and Lipsitt, H. A., Acta Metall. 10, 95 (1962).CrossRefGoogle Scholar
26.Gourdin, W.H. and Lassila, D.H., Acta Metall. Mater. 39, 2337 (1991).Google Scholar
27.Yoder, K. B. and Stone, D.S., in Thin Films: Stresses and Mechanical Properties IV, edited by Townsend, P. H., Weihs, T. P., Sanchez, J. E. Jr, and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 308, Pittsburgh, PA, 1993), p. 121.Google Scholar
28.Oliver, W.C. and Pharr, G. M., J. Mater. Res. 7, 1564 (1992).CrossRefGoogle Scholar
29.Stone, D. S., unpublished work.Google Scholar
30.Stone, D. S., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Ross, C. A., Townsend, P. H., Volkert, C.A., and Børgesen, P. (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 687.Google Scholar
31.Fartash, A., Fullerton, E. E., Schuller, I. K., Bobbin, S. E., Wagner, J.W., Cammerata, R. C., Kumar, S., and Grimsditch, M., Phys. Rev. B 44 (24), 13760 (1991).CrossRefGoogle Scholar
32.Fabes, B. D., Oliver, W.C., McKee, R.A., and Walker, F. J., J. Mater. Res. 7, 3056 (1992).CrossRefGoogle Scholar
33.Armstrong, R. W., Codd, I., Douthwaite, R. M., and Petch, N. J., Philos. Mag. 7, 45 (1962).CrossRefGoogle Scholar
34.Spitzig, W.A., Pelton, A. R., and Laabs, F. C., Acta Metall. 35, 2427 (1987).CrossRefGoogle Scholar
35.Mitchell, T.E., Lu, Y.C., Griffen, A. J. Jr, Nastasi, M., and Kung, H., J. Am. Ceram. Soc. 80 (7), 1673 (1997).CrossRefGoogle Scholar
36.Cheng Lu, Y., unpublished work.Google Scholar
37.Zehetbauer, M. and Seumer, V., Acta Metall. Mater. 41, 577 (1993).CrossRefGoogle Scholar
38.Bochniak, W., Acta Metall. Mater. 43, 225 (1995).Google Scholar
39.Kocks, U. F. and Rong Chen, Shuh, Phys. Status Solidi A131, 403 (1992).CrossRefGoogle Scholar
40.Basinski, Z. S., Foxall, R. A., and Pascual, R., Scripta Metall. 6, 807 (1972).CrossRefGoogle Scholar
41.Conrad, H., in High Strength Materials, edited by Zackay, V. F. (John Wiley & Sons, Inc., New York, 1964), p. 436.Google Scholar
42.Ravi, K. V. and Gibala, R., Metall. Trans. 2, 1219 (1971).CrossRefGoogle Scholar
43.Ravi, K. V. and Gibala, R., Acta Metall. 18, 623 (1970).CrossRefGoogle Scholar
44.Indrawirawan, H., Buck, O., and Carlson, O. N., Metall. Trans. 20A, 273 (1989).Google Scholar
45.Bowden, D. K. and Taylor, G., Acta Metall. 25, 417 (1977).CrossRefGoogle Scholar
46.Aono, Y., Kuramoto, E., and Kitajima, K., in Strength of Metals and Alloys, edited by Gifkins, R. C. (Pergamon Press, London, 1982), p. 9.CrossRefGoogle Scholar
47.Cao, W-d., Sprecher, A. F., and Conrad, H., in High-Temperature Niobium Alloys, edited by Stephens, J.J. and Ahmad, I. (The Minerals, Metals, and Materials Soc., Warrendale, PA, 1991), p. 27.Google Scholar
48.Yoder, K.B., Stone, D. S., Lin, J.C., and Hoffman, R.A., in Thin Films: Stresses and Mechanical Properties V, edited by Baker, S. P., Ross, C. A., Townsend, P. H., Volkert, C.A., and Børgesen, P., (Mater. Res. Soc. Symp. Proc. 356, Pittsburgh, PA, 1995), p. 651.Google Scholar
49.Basinski, Z.S., Philos. Mag. 4, 393 (1959).CrossRefGoogle Scholar
50.McClintock, F.A. and Argon, A. S., in Mechanical Behavior of Materials (Addison-Wesley, Reading, MA), p. 460.Google Scholar