Skip to main content Accessibility help
×
Home

The growth of zinc phthalocyanine thin films by pulsed laser deposition

  • Michal Novotný (a1), Jakub Šebera (a1), Amina Bensalah-Ledoux (a2), Stephan Guy (a2), Jiří Bulíř (a3), Přemysl Fitl (a4), Jan Vlček (a4), Dominika Zákutná (a5), Eva Marešová (a6), Pavel Hubík (a7), Irena Kratochvílová (a7), Martin Vrňata (a8) and Ján Lančok (a9)...

Abstract

Zinc phthalocyanine (ZnPc) thin films were prepared by pulsed laser deposition (PLD) using KrF laser (λ = 248 nm, τ = 5 ns). The effect of laser fluence (in the region from 10 to 100 mJ/cm2) and repetition rate of 50 and 200 Hz to the film growth and its properties was investigated. The growth of ZnPc thin film was in situ monitored using transmission measurement in ultraviolet-visible spectral range. The optical properties in conjunction with density functional theory/time-dependent density functional theory calculations suggested the growth of the film in β-phase. X-ray diffraction also revealed crystalline character of the film. The electrical properties analyzed by van der Pauw method exhibited resistivity ρ ≈ 108–1010 Ω cm. Fourier transform infrared spectroscopy analyses revealed low deterioration of PLD deposited ZnPc films. We demonstrate that, by finely tuning the deposition conditions, PLD is a successful technique for fabrication of ZnPc thin films.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: novotnym@fzu.cz

References

Hide All
1. Senthilarasu, S., Velumani, S., Sathyamoorthy, R., Subbarayan, A., Ascencio, J.A., Canizal, G., Sebastian, P.J., Chavez, J.A., and Perez, R.: Characterization of zinc phthalocyanine (ZnPc) for photovoltaic applications. Appl. Phys. A 77(3–4), 383 (2003).
2. Karousis, N., Ortiz, J., Ohkubo, K., Hasobe, T., Fukuzumi, S., Sastre-Santos, A., and Tagmatarchis, N.: Zinc phthalocyanine-graphene hybrid material for energy conversion: Synthesis, characterization, photophysics, and photoelectrochemical cell preparation. J. Phys. Chem. C 116(38), 20564 (2012).
3. Pfeiffer, M., Leo, K., Zhou, X., Huang, J.S., Hofmann, M., Werner, A., and Blochwitz-Nimoth, J.: Doped organic semiconductors: Physics and application in light emitting diodes. Org. Electron. 4(2–3), 89 (2003).
4. Fabris, C., Valduga, G., Miotto, G., Borsetto, L., Jori, G., Garbisa, S., and Reddi, E.: Photosensitization with zinc (II) phthalocyanine as a switch in the decision between apoptosis and necrosis. Cancer Res. 61(20), 7495 (2001).
5. Santhi, A., Namboodiri, V.V., Radhakrishnan, P., and Nampoori, V.P.N.: Spectral dependence of third order nonlinear optical susceptibility of zinc phthalocyanine. J. Appl. Phys. 100(5), 053109 (2006).
6. de la Escosura, A., Martinez-Diaz, M.V., Barbera, J., and Torres, T.: Self-organization of phthalocyanine-[60]fullerene dyads in liquid crystals. J. Org. Chem. 73(4), 1475 (2008).
7. Acikbas, Y., Evyapan, M., Ceyhan, T., Capan, R., and Bekaroglu, O.: Characterisation of Langmuir–Blodgett films of new multinuclear copper and zinc phthalocyanines and their sensing properties to volatile organic vapours. Sens. Actuators, B 123(2), 1017 (2007).
8. Gan, F.X.: Some considerations of organic materials for high density optical disk data storage. Chin. Sci. Bull. 45(6), 572 (2000).
9. Nahlik, J., Kasparkova, I., and Fitl, P.: Methodology of evaluating the influence of the resistance of contact regions in the measurements of sheet resistance on stripes of ultrathin high-resistance materials. Rev. Sci. Instrum. 83(7), 074701 (2012).
10. Kadish, K.M., Smith, K.M., and Guilard, R.U.: The Porphyrin Handbook: Phthalocyanines: Properties and Materials (San Diego: Academic Press, 2003).
11. Maggioni, G., Manera, M., Spadavecchia, J., Tonezzer, M., Carturan, S., Quaranta, A., Dejulianfernandez, C., Rella, R., Siciliano, P., and Dellamea, G.: Optical response of plasma-deposited zinc phthalocyanine films to volatile organic compounds. Sens. Actuators, B 127(1), 150 (2007).
12. Stanculescu, A., Socol, M., Socol, G., Mihailescu, I.N., Girtan, M., and Stanculescu, F.: Maple prepared organic heterostructures for photovoltaic applications. Appl. Phys. A 104(3), 921 (2011).
13. Stanculescu, A., Socol, M., Rasoga, O., Mihailescu, I.N., Socol, G., Preda, N., Breazu, C., and Stanculescu, F.: Laser prepared organic heterostuctures on glass/AZO substrates. Appl. Surf. Sci. 302, 169 (2014).
14. Fitl, P., Vrnata, M., Kopecky, D., Vlcek, J., Skodova, J., Bulir, J., Novotny, M., and Pokorny, P.: Laser deposition of sulfonated phthalocyanines for gas sensors. Appl. Surf. Sci. 302, 37 (2014).
15. Ghani, F., Kristen, J., and Riegler, H.: Solubility properties of unsubstituted metal phthalocyanines in different types of solvents. J. Chem. Eng. Data 57(2), 439 (2012).
16. Novotny, M., Bulir, J., Bensalah-Ledoux, A., Guy, S., Fitl, P., Vrnata, M., Lancok, J., and Moine, B.: Optical properties of zinc phthalocyanine thin films prepared by pulsed laser deposition. Appl. Phys. A 117(1), 377 (2014).
17. Matsumoto, N., Shima, H., Fujii, T., and Kannari, F.: Organic electroluminescence cells based on thin films deposited by ultraviolet laser ablation. Appl. Phys. Lett. 71(17), 2469 (1997).
18. Ina, E., Matsumoto, N., Shikada, E., and Kannari, F.: Laser ablation deposition of crystalline copper-phthalocyanine thin films. Appl. Surf. Sci. 127, 574 (1998).
19. Nishio, S., Mase, R., Oba, T., Matsuzaki, A., and Sato, H.: Preparation of amorphous organic semiconductor thin films with polyperinaphthalene structure on temperature-controlled substrates by excimer laser ablation of 3,4,9,10-perylenetetracarboxylic dianhydride. Appl. Surf. Sci. 127, 589 (1998).
20. Hong, C., Chae, H.B., Lee, K.H., Ahn, S.K., Kim, C.K., Kim, T.W., Cho, N.I., and Kim, S.O.: The possibility of pulsed laser deposited organic thin films for light-emitting diodes. Thin Solid Films 409(1), 37 (2002).
21. Wang, L.D. and Kwok, H.S.: Pulsed laser deposition of organic thin films. Thin Solid Films 363(1–2), 58 (2000).
22. Kajitani, T., Tanaka, O., Tange, Y., Matsuda, H., Ooie, T., Yano, T., Yoneda, M., Katsumura, M., and Suzaki, Y.: Chemical structure change of thin films prepared from nonpolymeric organic compounds by pulsed laser deposition. J. Vac. Sci. Technol., A 18(5), 2359 (2000).
23. Guy, S., Guy, L., Bensalah-Ledoux, A., Pereira, A., Grenard, V., Cosso, O., and Vautey, T.: Pure chiral organic thin films with high isotropic optical activity synthesized by UV pulsed laser deposition. J. Mater. Chem. 19(38), 7093 (2009).
24. Blanchet, G.B., Fincher, C.R., and Malajovich, I.: Laser evaporation and the production of pentacene films. J. Appl. Phys. 94(9), 6181 (2003).
25. Tawada, Y., Tsuneda, T., Yanagisawa, S., Yanai, T., and Hirao, K.: A long-range-corrected time-dependent density functional theory. J. Chem. Phys. 120(18), 8425 (2004).
26. Kratochvilova, I., Nespurek, S., Sebera, J., Zalis, S., Pavelka, M., Wang, G., and Sworakowski, J.: New organic FET-like photoactive device, experiments and DFT modeling. Eur. Phys. J. E 25(3), 299 (2008).
27. Sebera, J., Nespurek, S., Kratochvilova, I., Zalis, S., Chaidogiannos, G., and Glezos, N.: Charge carrier mobility in sulphonated and non-sulphonated Ni phthalocyanines: Experiment and quantum chemical calculations. Eur. Phys. J. B 72(3), 385 (2009).
28. Guy, S., Bensalah-Ledoux, A., Lambert, A., Guillin, Y., Guy, L., and Mulatier, J.C.: Chiral organic thin films: How far pulsed laser deposition can conserve chirality. Thin Solid Films 520(20), 6440 (2012).
29. Scheidt, W.R. and Dow, W.: Molecular stereochemistry of phthalocyanatozinc(II). J. Am. Chem. Soc. 99(4), 1101 (1977).
30. Perdew, J.P., Burke, K., and Ernzerhof, M.: Generalized gradient approximation made simple. Phys. Rev. Lett. 77(18), 3865 (1996).
31. Monkhorst, H.J. and Pack, J.D.: Special points for Brillouin-zone integrations. Phys. Rev. B 13(12), 5188 (1976).
32. Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G.E., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G.A., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A. Jr., Peralta, J.E., Ogliaro, F., Bearpark, M.J., Heyd, J., Brothers, E.N., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A.P., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, N.J., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.G., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, Ö., Foresman, J.B., Ortiz, J.V., Cioslowski, J., and Fox, D.J.: Gaussian 09 (Wallingford, CT: Gaussian Inc., 2009).
33. Becke, A.D.: Density-functional thermochemistry. III. The role of exact exchange. J. Chem. Phys. 98(7), 5648 (1993).
34. Adamo, C. and Barone, V.: Toward reliable density functional methods without adjustable parameters: The PBE0 model. J. Chem. Phys. 110(13), 6158 (1999).
35. Yanai, T., Tew, D.P., and Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51 (2004).
36. Iikura, H., Tsuneda, T., Yanai, T., and Hirao, K.: A long-range correction scheme for generalized-gradient-approximation exchange functionals. J. Chem. Phys. 115(8), 3540 (2001).
37. Becke, A.D.: Density-functional exchange-energy approximation with correct asymptotic behavior. Phys. Rev. A 38(6), 3098 (1988).
38. Lee, C., Yang, W., and Parr, R.G.: Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys. Rev. B 37(2), 785 (1988).
39. Miehlich, B., Savin, A., Stoll, H., and Preuss, H.: Results obtained with the correlation energy density functionals of becke and Lee, Yang and Parr. Chem. Phys. Lett. 157(3), 200 (1989).
40. Rassolov, V.A., Pople, J.A., Ratner, M.A., and Windus, T.L.: 6-31G∗ basis set for atoms K through Zn. J. Chem. Phys. 109(4), 1223 (1998).
41. Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen. J. Chem. Phys. 90(2), 1007 (1989).
42. Kendall, R.A., Dunning, T.H., and Harrison, R.J.: Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions. J. Chem. Phys. 96(9), 6796 (1992).
43. Woon, D.E. and Dunning, T.H.: Gaussian basis sets for use in correlated molecular calculations. III. The atoms aluminum through argon. J. Chem. Phys. 98(2), 1358 (1993).
44. O'Boyle, N.M., Tenderholt, A.L., and Langner, K.M.: cclib: A library for package-independent computational chemistry algorithms. J. Comput. Chem. 29(5), 839 (2008).
45. Senthilarasu, S., Sathyamoorthy, R., and Kulkarni, S.K.: Substrate temperature effects on structural orientations and optical properties of ZincPthalocyanine (ZnPc) thin films. Mater. Sci. Eng., B 122(2), 100 (2005).
46. Henriksson, A. and Sundbom, M.: Semiempirical molecular orbital studies of phthalocyanines. I. The electronic structure and excited states of phthalocyanine, H2Pc. Theor. Chim. Acta 27(3), 213 (1972).
47. Edwards, L. and Gouterma, M.: Porphyrins XV. Vapor absorption spectra and stability: Phthalocyanines. J. Mol. Spectrosc. 33(2), 292 (1970).
48. El-Nahass, M.M., Zeyada, H.M., Aziz, M.S., and El-Ghamaz, N.A.: Structural and optical properties of thermally evaporated zinc phthalocyanine thin films. Opt. Mater. 27(3), 491 (2004).
49. Louis, J.S., Lehmann, D., Friedrich, M., and Zahn, D.R.T.: Study of dependence of molecular orientation and optical properties of zinc phthalocyanine grown under two different pressure conditions. J. Appl. Phys. 101(1), 031503 (2007).
50. Barrett, M.A., Borkowska, Z., Humphreys, M.W., and Parsons, R.: Ellipsometry of thin-films of copper phthalocyanine. Thin Solid Films 28(2), 289 (1975).
51. Debe, M.K.: Variable angle spectroscopic ellipsometry studies of oriented phthalocyanine films. II. Copper phthalocyanine. J. Vac. Sci. Technol., A 10(4), 2816 (1992).
52. Liu, Z.T., Kwok, H.S., and Djurisic, A.B.: The optical functions of metal phthalocyanines. J. Phys. D: Appl. Phys. 37(5), 678 (2004).
53. Lucia, E.A. and Verderame, F.D.: Spectra of polycrystalline phthalocyanines in visible region. J. Chem. Phys. 48(6), 2674 (1968).
54. Wojdyła, M., Derkowska, B., Łukasiak, Z., and Bała, W.: Absorption and photoreflectance spectroscopy of zinc phthalocyanine (ZnPc) thin films grown by thermal evaporation. Mater. Lett. 60(29–30), 3441 (2006).
55. Chowdhury, A., Biswas, B., Majumder, M., Sanyal, M.K., and Mallik, B.: Studies on phase transformation and molecular orientation in nanostructured zinc phthalocyanine thin films annealed at different temperatures. Thin Solid Films 520(21), 6695 (2012).
56. Senthilarasu, S., Hahn, Y.B., and Lee, S-H.: Nano structure formation in vacuum evaporated zinc phthalocyanine (ZnPc) thin films. J. Mater. Sci.: Mater. Electron. 19(5), 482 (2007).
57. Cai, Z-L., Crossley, M.J., Reimers, J.R., Kobayashi, R., and Amos, R.D.: Density functional theory for charge transfer: The nature of the N-bands of porphyrins and chlorophylls revealed through CAM-B3LYP, CASPT2, and SAC-CI calculations. J. Phys. Chem. B 110(31), 15624 (2006).
58. Saini, G.S., Singh, S., Kaur, S., Kumar, R., Sathe, V., and Tripathi, S.K.: Zinc phthalocyanine thin film and chemical analyte interaction studies by density functional theory and vibrational techniques. J. Phys.: Condens. Matter 21(22), 225006 (2009).
59. Bala, W., Wojdyla, M., Rebarz, M., Szybowic, M., Drozdowski, M., Grodzicki, A., and Piszczek, P.: Influence of central metal atom in MPc (M = Cu, Zn, Mg, Co) on Raman, FT-IR, absorbance, reflectance, and photoluminescence spectra. J. Optoelectron. Adv. Mater. 11(3), 264 (2009).
60. Farag, A.A.M.: Optical absorption studies of copper phthalocyanine thin films. Opt. Laser Technol. 39(4), 728 (2007).
61. Maggioni, G., Quaranta, A., Carturan, S., Patelli, A., Tonezzer, M., Ceccato, R., and Della Mea, G.: Deposition of copper phthalocyanine films by glow-discharge-induced sublimation. Chem. Mater. 17(7), 1895 (2005).
62. Schunemann, C., Elschner, C., Levin, A.A., Levichkova, M., Leo, K., and Riede, M.: Zinc phthalocyanine—Influence of substrate temperature, film thickness, and kind of substrate on the morphology. Thin Solid Films 519(11), 3939 (2011).
63. Senthilarasu, S., Hahn, Y.B., and Lee, S-H.: Structural analysis of zinc phthalocyanine (ZnPc) thin films: X-ray diffraction study. J. Appl. Phys. 102(4), 043512 (2007).

Keywords

Type Description Title
WORD
Supplementary materials

Novotný supplementary material
Table S1

 Word (18 KB)
18 KB

The growth of zinc phthalocyanine thin films by pulsed laser deposition

  • Michal Novotný (a1), Jakub Šebera (a1), Amina Bensalah-Ledoux (a2), Stephan Guy (a2), Jiří Bulíř (a3), Přemysl Fitl (a4), Jan Vlček (a4), Dominika Zákutná (a5), Eva Marešová (a6), Pavel Hubík (a7), Irena Kratochvílová (a7), Martin Vrňata (a8) and Ján Lančok (a9)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed