Skip to main content Accessibility help

Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C

  • Shiliang Wang (a1), Yuehui He (a1), Jian Xu (a1), Yao Jiang (a1), Baiyun Huang (a1), Jin Zou (a2), Yong Wang (a2), C.T. Liu (a3) and P.K. Liaw (a3)...


In this study, we report the growth of metallic tungsten nanowires induced by alloy catalysts (Fe–Ni) at a temperature of 850 °C. The synthesized tungsten nanowires have bottom diameters of 100 to 400 nm and tip diameters of <80 nm, and show a well-defined single-crystalline structure. The formation of the (Fe,Ni)-catalyzed W nanowires should be controlled by the vapor–solid–solid mechanism, rather than the traditional vapor–liquid–solid mechanism, because the growth temperature is significantly below the lowest eutectic temperature (1455 °C) of the Fe–Ni–W ternary system. Our study demonstrates the feasibility of synthesizing metallic nanowires via metal-catalyzed methods, which may be extended to the synthesis of some other metallic nanowires.


Corresponding author

a)Address all correspondence to these authors. e-mail:
b)Address all correspondence to these authors. e-mail:


Hide All
1Xia, Y.N., Yang, P.D., Sun, Y.G., Wu, Y.Y., Mayers, B., Gates, B., Yin, Y.D., Kim, F.Yan, H.Q.: One-dimensional nanostructures: Synthesis, characterization, and applications. Adv. Mater. 15, 353 2003
2Law, M., Goldberger, J.Yang, P.: Semiconductor nanowires and nanotubes. Annu. Rev. Mater. Res. 34, 83 2004
3Walter, E.C., Ng, K., Zach, M.P., Penner, R.M.Favier, F.: Electronic device from electrodeposited metal nanowires. Microelectron. Eng. 61, 555 2002
4Whitney, T.M., Jiang, J.S., Searson, P.C.Chien, C.L.: Fabrication and magnetic properties of arrays of metallic nanowires. Science 261, 1316 1993
5Keating, C.D.Natan, M.J.: Striped metal nanowires as building blocks and optical tags. Adv. Mater. 15, 451 2003
6Patolsky, F., Weizmann, Y.Willner, I.: Actin-based metallic nanowires as bio-nanotransporters. Nat. Mater. 3, 692 2004
7Zach, M.P., Ng, K.H.Penner, R.M.: Molybdenum nanowires by electrodeposition. Science 290, 2120 2000
8Keren, K., Krueger, M., Gilad, R., Ben-Yoseph, G.Braun, E.: Sequence-specific molecular lithography on single DNA molecules. Science 297, 72 2002
9Wang, J.Li, Y.: Rational synthesis of metal nanotubes and nanowires from lamellar structures. Adv. Mater. 15, 445 2003
10Choi, H.Park, S.H.: Seedless growth of free-standing copper nanowires by chemical vapor deposition. J. Am. Chem. Soc. 126, 6248 2004
11Vaddiraju, S., Chandrasekaran, H.Sunkara, M.K.: Vapor phase synthesis of tungsten nanowires. J. Am. Chem. Soc. 125, 10792 2003
12Zhou, J., Deng, S., Gong, L., Ding, Y., Chen, J., Huang, J., Chen, J., Xu, N.Wang, Z.L.: Growth of large-area aligned molybdenum nanowires by high temperature chemical vapor deposition: Synthesis, growth mechanism, and device application. J. Phys. Chem. B 110, 10296 2006
13Hong, B.H., Bae, S.C., Lee, C.W., Jeong, S.Kim, K.S.: Ultrathin single-crystalline silver nanowire arrays formed in an ambient solution phase. Science 294, 348 2001
14Sun, Y., Gates, B., Mayers, B.Xia, Y.: Crystalline silver nanowires by soft solution processing. Nano Lett. 2, 165 2002
15Lee, Y.H., Choi, C.H., Jang, Y.T., Kim, E.K.Ju, B.K.: Tungsten nanowires and their field electron-emission properties. Appl. Phys. Lett. 81, 745 2002
16Umnov, A.G., Shairatori, Y.Hiraoka, H.: Giant field amplification in tungsten nanowires. Appl. Phys. A 77, 159 2003
17Trentler, T.J., Kickman, K.M., Goel, S.C., Viano, A.M., Gibbons, P.C., Buhro, W.E.: Solution-liquid-solid growth of crystalline III-V semiconductors: An analogy to vapor-liquid-solid growth. Science 270, 1791 1995
18Holmes, J.D., Johnston, K.P., Doty, R.C.Korgel, B.A.: Control of thickness and orientation of solution-grown silicon nanowires. Science 287, 1471 2000
19Morales, A.M.Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 1998
20Duan, X.F.Lieber, C.M.: General synthesis of compound semiconductor nanowires. Adv. Mater. 12, 298 2000
21Wu, Y.Yang, P.: Direct observation of vapor-liquid-solid nanowire growth. J. Am. Chem. Soc. 123, 3165 2001
22Kamins, T.I., Williams, R. Stanley, Basile, D.P., Hesjedal, T.Harris, J.S.: Ti-catalyzed Si nanowires by chemical vapor deposition: Microscopy and growth mechanisms. J. Appl. Phys. 89, 1008 2001
23Persson, A.I., Larsson, M.W., Stenstrom, S., Ohlsson, B.J., Samuelson, L.Wallenberg, L.R.: Solid-phase diffusion mechanism for GaAs nanowires growth. Nat. Mater. 3, 677 2004
24Dick, K.A., Deppert, K., Mårtensson, T., Mandl, B., Samuelson, L.Seifert, W.: Failure of the vapor-liquid-solid mechanism in Au-assisted MOVPE growth of InAs nanowires. Nano Lett. 5, 761 2005
25Colli, A., Hofmann, S., Ferrari, A.C., Ducati, C., Martelli, F., Rubini, S., Cabrini, S., Franciosi, A.Robertson, J.: Low-temperature synthesis of ZnSe nanowires and nanosaws by catalyst-assisted molecular-beam epitaxy. Appl. Phys. Lett. 86, 153103 2005
26Tuan, H.Y., Lee, D.C., Hanrath, T.Korgel, B.A.: Catalytic solid-phase seeding of silicon nanowires by nickel nanocrystals in organic solvents. Nano Lett. 5, 681 2005
27Villars, P., Prince, A.Okamoto, H.: Handbook of Ternary Diagrams ASM Materials Park, OH 1990 10671
28Zhang, R.Q., Lifshitz, Y.Lee, S.T.: Oxide-assisted growth of semiconducting nanowires. Adv. Mater. 15, 635 2003
29Lassner, E.Schubert, W.D.: Tungsten: Properties, Chemistry, Technology Of The Element, Alloys, and Chemical Compounds Kluwer Academic/Plenum Publishers New York 1998
30Haubner, R., Schubert, W.D., Lassner, E.Lux, B.: Influence of iron and nickel on the hydrogen reduction of WO3 to tungsten. Int. J. Refract. Hard Mater. 7, 47 1988
31He, Y.H.Chen, L.B., Huang, B.Y.Liaw, P.K.Recycling of heavy metal alloy turnings to powders by oxidation-reduction process. Int. J. Refract. Hard Mater. 21, 227 2003
32Wen, Z., Zhao, M.Jiang, Q.: The melting temperature of molecular nanocrystals at the lower bound of the mesoscopic size rang. J. Phys.: Condens. Matter 12, 8819 2000


Growth of single-crystalline tungsten nanowires by an alloy-catalyzed method at 850 °C

  • Shiliang Wang (a1), Yuehui He (a1), Jian Xu (a1), Yao Jiang (a1), Baiyun Huang (a1), Jin Zou (a2), Yong Wang (a2), C.T. Liu (a3) and P.K. Liaw (a3)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed