Skip to main content Accessibility help
×
Home

Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates

  • Jinsong Wu (a1), Shihhan Lo (a2), Kai Song (a3), Baiju K. Vijayan (a4), Wenyun Li (a5), Kimberly A. Gray (a6) and Vinayak P. Dravid (a7)...

Abstract

Synthesis of titania (TiO2) nanorods on various substrates has recently attracted attention for energy and environmental applications. Herein, we report growth of nanostructured TiO2 on Si(111) and glass borosilicate substrates by a two-step method. A thin film of anatase TiO2 was first laid down by spin coating and annealing, followed by the growth of rutile TiO2 nanorods with a hydrothermal method. To understand the role of the polycrystalline anatase TiO2 seed layer, we selected a relatively high temperature for the hydrothermal reaction, e.g., 175 °C at which no rutile TiO2 nanorods could grow without the precoated anatase TiO2 layer. The morphology and microstructure of both the polycrystalline anatase and rutile nanorod layers were characterized by electron microscopy and x-ray powder diffraction. Such a two-step fabrication method makes it possible to grow TiO2 nanorods on almost any substrate.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: jinsong-wu@northwestern.edu

References

Hide All
1.Liu, Z., Zhang, X., Nishimoto, S., Murakami, T., and Fujishima, A.: Efficient photocatalytic degradation of gaseous acetaldehyde by highly ordered TiO2 nanotube arrays. Environ. Sci. Technol. 42, 8547 (2008).
2.Fujishima, A., Zhang, X., and Tryk, D.A.: TiO2 photocatalysis and related surface phenomena. Surf. Sci. Rep. 63, 515 (2008).
3.Chen, X. and Mao, S.S.: Titanium dioxide nanomaterials: Synthesis, properties, modifications, and applications. Chem. Rev. 107, 2891 (2007).
4.Chen, L., Graham, M.E., Li, G., and Gray, K.A.: Fabricating highly active mixed TiO2 photocatalysts by reactive DC magnetron sputter deposition. Thin Solid Films 515, 1176 (2006).
5.Fujishima, A. and Honda, K.: Electrochemical photolysis of water at a semiconductor electrode. Nature 238, 37 (1972).
6.Fujishima, A. and Honda, K.: Studies on photosensitive electrode reactions. Bull. Chem. Soc. Jpn. 44, 1148 (1971).
7.O’Regan, B. and Gratzel, M.: A low cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353, 737 (1991).
8.Mor, G.K., Shankar, K., Paulose, M., Varghese, O.K., and Grimes, C.A.: Use of highly-ordered TiO2 nanotube arrays in dye-sensitized solar cells. Nano Lett. 6, 215 (2006).
9.Kongkanand, A., Tvrdy, K., Takechi, K., Kuno, M.K., and Kamat, P.V.: Quantum dot solar cells. Tuning photoresponse through size and shape control of CdSe-TiO2 architecture. J. Am. Chem. Soc. 130, 4007 (2008).
10.Vijayan, B., Dimitrijevic, N.M., Rajh, T., and Gray, K.: Effect of calcination temperature on the photocatalytic reduction and oxidation processes of hydrothermally synthesized titania nanotubes. J. Phys. Chem. C 114, 12994 (2010).
11.Dimitrijevic, N.M., Saponjic, Z.V., Rabatic, B.M., Poluektov, O.G., and Rajh, T.: Effect of size and shape of nanocrystalline TiO2 on photogenerated charges. An EPR study. J. Phys. Chem. C 111, 14597 (2007).
12.Hurum, D.C., Agrios, A.G., Gray, K.A., Rajh, T., and Thurnauer, M.C.: Explaining the enhanced photocatalytic activity of Degussa P25 mixed-phase TiO2 using EPR. J. Phys. Chem. B 107, 4545 (2003).
13.Chen, C.A., Chen, Y.M., Korotcov, A., Huang, Y.S., Tsai, D.S., and Tiong, K.K.: Growth and characterization of well-aligned densely-packed rutile TiO2 nanocrystals on sapphire substrate via metal-organic chemical vapor deposition. Nanotechnology 19, 075611 (2008).
14.Wu, J.-J. and Yu, C.-C.: Aligned TiO2 nanorods and nanowalls. J. Phys. Chem. B 108, 3377 (2004).
15.Wu, J.-M., Shih, H.C., Tseng, Y.-K., Hsu, C.-L., and Tsay, C.-Y.: Synthesizing and comparing the photocatalytic activities of single-crystalline TiO2 rutile nanowires and mesoporous anatase paste. J. Electrochem. Soc. 154, H157 (2007).
16.Wu, J.-M., Shih, H.C., and Wu, W.-T.: Formation and photoluminescence of single-crystalline rutile TiO2 nanowires synthesized by thermal evaporation. Nanotechnology 17, 105 (2006).
17.Smith, W., Mao, S., Lu, G., Catlett, A., Chen, J., and Zhao, Y.-P.: The effect of Ag nanoparticle loading on the photocatalytic activity of TiO2 nanorod arrays. Chem. Phys. Lett. 485, 171 (2010).
18.Li, Y., Fang, X.S., Koshizaki, N., Sasaki, T., Li, L., Gao, S.Y., Shimizu, Y., Bando, Y., and Golberg, D.: Periodic TiO2 nanorod arrays with hexagonal nonclose-packed arrangements: Excellent field emitters by parameter optimization. Adv. Funct. Mater. 19, 2467 (2009).
19.Feng, X., Shankar, K., Varghese, O.K., Paulose, M., Latempa, T.J., and Grimes, C.A.: Vertical aligned single crystal TiO2 nanowire arrays grown directly on transparent conducting oxide coated glass: Synthesis details and applications. Nano Lett. 8, 3781 (2008).
20.Han, Y., Wu, G., Wang, M., and Chen, H.Z.: The growth of a c-axis highly oriented sandwiched TiO2 film with superhydrophilic properties without UV irradiation on SnO: F substrate. Nanotechnology 20, 235605 (2009).
21.Liu, B. and Aydil, E.S.: Growth of oriented single-crystalline rutile TiO2 nanorods on transparent conducting substrates for dye-sensitized solar cells. J. Am. Chem. Soc. 131, 3985 (2009).
22.Kumar, A., Madaria, A.R., and Zhou, C-W.: Growth of aligned single-crystalline rutile TiO2 nanowires on arbitrary substrate and their application in dye-sensitized solar cells. J. Phys. Chem. C 114, 7787 (2010).
23.Wang, H.-E., Chen, Z., Leung, Y.H., Luan, C., Liu, C., Tang, Y., Yan, C., Zhang, W., Zapien, J.A., Bello, I., and Lee, S.-T.: Hydrothermal synthesis of ordered single-crystalline rutile TiO2 nanorod arrays on different substrates. Appl. Phys. Lett. 96, 263104 (2010).
24.Prieto-Mahaney, O.O., Murakami, N., Abe, R., and Ohtani, B.: Correlation between photocatalytic activities and structural and physical properties of titanium (IV) oxide powders. Chem. Lett. 38, 238 (2009).
25.Kim, S.J., Lee, J.K., Lee, E.G., Lee, H.G., and Lee, K.S.: Photocatalytic properties of rutile TiO2 acicular particles in aqueous 4-chlorophenol solution. J. Mater. Res. 18, 729 (2003).
26.Habibi, M.H. and Vosooghian, H.: Photocatalytic degradation of some organic sulfides as environmental pollutants using titanium dioxides suspension. J. Photochem. Photobiol. A 174, 45 (2005).
27.Zachariah, A., Baiju, K.V., Shukla, S., Deepa, K.S., James, J., and Warrier, K.G.K.: Synergistic effect photocatalysis as observed for mixed-phase nanocrystalline titania processed via sol-gel solvent mixing and calcination. J. Phys. Chem. C 112, 11345 (2008).
28.Li, G.H., Ciston, S., Saponjic, Z.V., Chen, L., Dimitrijevic, N.M., Rajh, T., and Gray, K.A.: Synthesizing mixed-phase TiO2 nanocomposites using a hydrothermal method for photo-oxidation and photoreduction applications. J. Catal. 253, 105 (2008).
29.Miyagi, T., Kamei, M., Mitsuhashi, T., Ishigaki, T., and Yamazaki, A.: Charge separation at the rutile/anatase interface: A dominant factor of photocatalytic activity. Chem. Phys. Lett. 390, 399 (2004).
30.Kandiel, T.A., Dillert, R., Feldhoff, A., and Bahnemann, D.W.: Direct synthesis of photocatalytically active rutile TiO2 nanorods partly decorated with anatase nanoparticles. J. Phys. Chem. C 114, 4909 (2010).
31.Li, G.H., Dimitrijevic, N.M., Chen, L., Nichols, J.M., Rajh, T., and Gray, K.A.: The important role of tetrahedral Ti4+ sites in the phase transformation and photocatalytic activity of TiO2 nanocomposites. J. Am. Chem. Soc. 130, 5402 (2008).
32.Li, G.H. and Gray, K.A.: The solid-solid interface: Explaining the high and unique photocatalytic reactivity of TiO2-based nanocomposite materials. Chem. Phys. 339, 173 (2007).
33.Gribb, A.A. and Banfield, J.F.: Particle size effects on transformation kinetics and phase stability in nanocrystalline TiO2. Am. Mineral. 82, 717 (1997).
34.Cheng, H.M., Ma, J.M., Zhao, Z.G., and Qi, L.M.: Hydrothermal preparation of uniform nanosize rutile and anatase particles. Chem. Mater. 7, 66 (1995).

Keywords

Related content

Powered by UNSILO

Growth of rutile TiO2 nanorods on anatase TiO2 thin films on Si-based substrates

  • Jinsong Wu (a1), Shihhan Lo (a2), Kai Song (a3), Baiju K. Vijayan (a4), Wenyun Li (a5), Kimberly A. Gray (a6) and Vinayak P. Dravid (a7)...

Metrics

Altmetric attention score

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.