Skip to main content Accessibility help

Growth of nanoparticulate films of Ca3Co4O9 by a microwave plasma–assisted spray process

  • Ted Wangensteen (a1), Marek Merlak (a1), Tara Dhakal (a1), Pritish Mukherjee (a1), Sarath Witanachchi (a1), Bed Poudel (a2) and Giri Joshi (a2)...


In this article, we report the use of a microwave plasma in a microwave plasma–assisted spray (MPAS) technique to grow crystalline nanoparticles of the oxide thermoelectric material Ca3Co4O9. This unique growth process allows the formation of nanoparticle coatings on substrates from an aqueous precursor of Ca and Co salts. The particle size is controlled from few tens to few hundred nanometers by varying the concentration of the precursor. The resistivity, Seebeck coefficient, and the power factor (PF) measured in the temperature range of 300–700 K for films grown by MPAS process with varying concentrations of calcium and cobalt chlorides are presented. Films with larger nanoparticles showed a trend toward higher PFs than those with smaller nanoparticles. Films with PFs as high as 220 μW/mK2 were observed to contain larger nanoparticles.


Corresponding author

a)Address all correspondence to this author. e-mail:


Hide All
1.Tritt, T. and Subramanian, M.: Thermoelectric materials, phenomena, and applications: A bird’s eye view. MRS Bull. 31, 188 (2006).
2.Van Zeghbroeck, B.: Principles of Semiconductor Devices (University of Colorado, Boulder, CO, 2006) online∼bart/book/book/index.html
3.Xu, G., Funahashi, R., Shikano, M., Matsubara, I., and Zhou, Y.: Thermoelectric properties of the Bi- and Na- substituted Ca3Co4O9 system. Appl. Phys. Lett. 80(20), 3760 (2002).
4.Snyder, G. J. and Toberer, E.: Complex thermoelectric materials—Review article. Nat. Mater. 7, 105 (2008).
5.Bottner, H., Chen, G., and Venkatasubramanian, R.: Aspects of thin-film superlattice thermoelectric materials, devices, and applications. MRS Bull. 31, 211 (2006).
6.Koumoto, K., Terasaki, I., and Funahashi, R.: Complex oxide materials for potential thermoelectric applications. MRS Bull. 31, 206 (2006).
7.Tyson, T., Chen, Z., Jie, Q., Li, Q., and Tu, J.: Local structure of thermoelectric Ca3Co4O9. Phys. Rev. B 79, 024109 (2009).
8.Venkatasubramanian, R., Slivola, E., Colpitts, T., and O’Quinn, B.: Thin-film thermoelectric devices with high room-temperature figures of merit. Nature 413, 597 (2001).
9.Hyde, R., Beekman, M., Nolas, G.S., Mukherjee, P., and Witanachchi, S.: Growth and characterization of germanium-based type I clathrate thin films deposited by pulsed laser ablation, in Proceedings of the 31st International Conference on Advanced Ceramics and Composites, American Ceramics Society, Vol. 28, Issue 8 (Wiley, Hoboken, NJ, 2009), p. 211.
10.Bertini, L., Billquist, K., Christensen, M., Gatti, C., Holmgren, L., Iverson, B., Mueller, E., Muhammed, M., Noriega, G., Palmqvist, A., Platzek, D., Rowe, D., Saramat, A., Stiewe, C., Toprak, M., Williams, S., and Zhang, Y.: Grain size dependence of transport properties of nano-engineered thermoelectric CoSb3, in Proceedings of the 22nd International Conference on Thermoelectrics, August 21, 2003, p. 93.
11.Nolas, G., Sharp, J., and Goldsmid, H.: Thermoelectrics—Basic Principles and New Materials Developments (Springer-Verlag, Berlin, Heidelberg, New York, 2001).
12.Toprak, M., Stiewe, C., Platzek, D., Williams, S., Bertini, L., Muller, E., Gatti, C., Zhang, Y., Rowe, M., and Muhammed, M.: The impact of nanostructuring on the thermal conductivity of thermoelectric CoSb3. Adv. Funct. Mater. 14(12), 1189 (2004).
13.Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M., Chen, G., and Ren, Z.: High-thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys. Science 320, 634 (2008).
14.Popescu, A., Woods, L.M., Martin, J., and Nolas, G.S.: Model of transport properties of thermoelectric nanocomposite materials. Phys. Rev. B 79, 205302 (2009).
15.Popescu, A. and Woods, L.M.: Enhanced thermoelectricity in composites by electronic structure modifications and nanostructuring. Appl. Phys. Lett. 97, 052102.1 (2010).
16.Zebarjadi, M., Esfarjani, K., Shakouri, A., Bahk, J., Bian, Z., Zeng, G., Bowers, J., Lu, H., Zide, J., and Gossard, A.: Effect of nanoparticle scattering on thermoelectric power factor. Appl. Phys. Lett. 94, 202105 (2009).
17.Wang, Y., Sui, Y., Cheng, J., Wang, X., and Su, W.: Comparison of the high temperature thermoelectric properties for Ag-doped and Ag-added Ca3Co4O9. J. Alloys Compd. 477, 817 (2009).
18.Eng, H., Prellier, W., Hebert, S., Grebille, D., Mechin, L., and Mercey, B.: Influence of pulsed laser deposition growth conditions on the thermoelectric properties of Ca3Co4O9 thin films. J. Appl. Phys. 97, 013706 (2005).
19.Hu, Y.F., Sutter, E., Si, W.D., and Li, Q.: Thermoelectric properties and microstructure of c-axis-oriented thin films on glass substrates. Appl. Phys. Lett. 87, 171912 (2005).
20.Yin, T., Liu, D., Ou, Y., Ma, F., Xie, S., Li, J.-F., and Li, J.: Nanocrystalline thermoelectric Ca3Co4O9 ceramics by sol-gel electrospinning and spark plasma sintering. J. Phys. Chem. C 114, 10061 (2010).
21.Zhang, Y., Zhang, J.X., Lu, Q.M., and Zhang, Q.Y.: Synthesis and characterization of Ca3Co4O9 nanoparticles by citrate sol-gel method. Mater. Lett. 60, 2443 (2006).
22.Mitzutani, Y., Uga, Y., and Nishimoto, T.: An investigation on ultrasonic atomization. Bull. JSME 15(83), 620 (1972).
23.Wangensteen, T., Witanachchi, S., and Mukherjee, P.: Initial studies of thermoelectric nanoparticle growth using a laser-assisted spray pyrolysis (LASP) method, Presented at 31st International Conference on Advanced Ceramics and Composites, Daytona Beach, FL (2007).
24.Merlak, M.: Design and characterization of microwave assisted spray deposition system: Application to Eu doped Y2O3 nano-particle coatings. Master’s Thesis, University of South Florida (2010).
25.Wangensteen, T., Dhakal, T., Merlak, M., Witanachchi, S., Phan, M.H., Srikanth, H., and Mukherjee, P.: Growth of uniform ZnO nanoparticles by a microwave plasma process. J. Alloys Compd. 509, 6859 (2011).
26.Zhang, Y., Zhang, J.X., and Lu, Q.M.: Rapid synthesis of Ca2Co2O5. J. Alloys Compd. 399, 64 (2005).
27.Kwon, O., Jo, W., Ko, K., Kim, J., Bae, S., Koo, H., Jeong, S., Kim, J., and Park, C.: Thermoelectric properties and texture evaluation of Ca3Co4O9 prepared by a cost-effective multisheet cofiring technique. J. Mater. Sci. 46(9), 2887 (2011).
28.Shikano, M. and Funahashi, R.: Electrical and thermal properties of single-crystalline (Ca2CoO3)0.7CoO2 with a Ca3Co4O9 structure. Appl. Phys. Lett. 82, 1851 (2003).
29.Cheng, J., Sui, Y., Wang, Y., Wang, X., and Su, W.: First-order phase transition characteristic of the high temperature metal-semiconductor transition in [Ca2CoO3]0.62[CoO2]. Appl. Phys. Mater. Sci. Process. 94, 911 (2008).
30.Woods, L., Popescu, A., Martin, J., and Nolas, G.: Transport properties of thermoelectric nanocomposites, in Materials and Devices for Thermal-to-Electric Energy Conversion, edited by Yang, J., Nolas, G.S., Koumoto, K., and Grin, Y. (Mater. Res. Soc. Symp. Proc. 1166, Warrendale, PA, 2009) 1166-N05-08, p. 121.
31.Vineis, C., Harman, T., Calawa, S., Walsh, M., Reeder, R., Singh, R., and Shakouri, A.: Carrier concentration and temperature dependence of the electronic transport properties of epitaxial PbTe and PbTe/PbSe nanodot superlattices. Phys. Rev. B 77, 235202 (2008).
32.Shi, L., Yao, D., Zhang, G., and Li, B.: Size dependent thermoelectric properties of silicon nanowires. Appl. Phys. Lett. 95, 063102 (2009).
33.Ishida, A., Cao, D., Morioka, S., Inoue, Y., and Kita, T.: Seebeck effect in IV–VI semiconductor films and quantum wells. J. Electron. Mater. 38(7), 940 (2009).
34.Amith, A.: Seebeck coefficient in N-type germanium-silicon alloys: “Competition” region. Phys. Rev. 139, A1626 (1963).
35.Kinemuchi, Y., Nakano, H., Mikami, M., Kobayashi, K., Watari, K., and Hotta, Y.: Enhanced boundary-scattering of electrons and phonons in nanograined zinc oxide. J. Appl. Phys. 108, 053721 (2010).
36.Brinkman, W. and Rice, T.: Application of Gutzwiller’s variational method to the metal-insulator transition. Phys. Rev. B 2(10), 4302 (1970).
37.Wang, Y., Sui, Y., Cheng, J., Wang, X., Su, W., and Fan, H.: Influence of Y3+ doping on the high-temperature transport mechanism and thermoelectric response of misfit-layered Ca3Co4O9. Applied Physics A 99, 451 (2010).


Growth of nanoparticulate films of Ca3Co4O9 by a microwave plasma–assisted spray process

  • Ted Wangensteen (a1), Marek Merlak (a1), Tara Dhakal (a1), Pritish Mukherjee (a1), Sarath Witanachchi (a1), Bed Poudel (a2) and Giri Joshi (a2)...


Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed