Skip to main content Accessibility help
×
Home

Growth of in situ multilayer diamond films by varying substrate–filament distance in hot-filament chemical vapor deposition

  • Mubarak Ali (a1) and Mustafa Ürgen (a2)

Abstract

Single and multilayer diamond films were grown on silicon by varying substrate distance in hot-filament chemical vapor deposition. The grown films were characterized by scanning electron microscope (SEM) and Raman spectroscopy. From SEM surface images, it was observed that the films grown at substrate distances of 8, 7, and 6 mm and temperatures of 740, 780, and 830 °C possessed cauliflower, pseudocubes, and finally well-faceted cubes morphology. SEM fracture cross-sectional investigations revealed that growth of pseudocubes initiated on the top of cauliflower structure. By using the parametric relations gathered from single layer diamond growth studies, first time, multilayer diamond coatings were grown in situ with tunable thickness by only varying the substrate distance from filament assembly during deposition.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: mubarak74@comsats.edu.pk

References

Hide All
1.Angus, J.C. and Hayman, C.C.: Low-pressure, metastable growth of diamond and “diamondlike” phases. Science 241, 913921 (1988).
2.Miyoshi, K., Wu, R.L.C., and Garscadden, A.: Friction and wear of diamond and diamondlike carbon coatings. Surf. Coat. Technol. 54/55, 428434 (1992).
3.Nemanich, R.J., Baumann, P.K., Benjamin, M.C., Nam, O.H., Sowers, A.T., Ward, B.L., Ade, H., and Davis, R.F.: Electron emission properties of crystalline diamond and III-nitride surfaces. Appl. Surf. Sci. 130132, 694703 (1998).
4.Geis, M.W., Efremow, N.N., Krohn, K.E., Twichell, J.C., Lyszczarz, T.M., Kalish, R., Greer, J.A., and Tabat, M.D.: A new surface electron-emission mechanism in diamond cathodes. Nature 393, 431 (1998).
5.Sein, H., Ahmed, W., Jackson, M., Ali, N., and Gracio, J.: Stress distribution in diamond films grown on cemented WC–Co dental burs using modified hot-filament CVD. Surf. Eng. Technol. 163164, 196202 (2003).
6.Salgueiredo, E., Almeida, F.A., Amaral, M., Fernandes, A.J.S., Costa, F.M., Silva, R.F., and Oliveira, F.J.: CVD micro/nanocrystalline diamond (MCD/NCD) bilayer coated odontological drill bits. Diamond Relat. Mater. 18, 264270 (2009).
7.Zhang, J., Zimmer, J.W., Howe, R.T., and Maboudian, R.: Characterization of boron-doped micro- and nanocrystalline diamond films deposited by wafer-scale hot filament chemical vapor deposition for MEMS applications. Diamond Relat. Mater. 17, 2328 (2008).
8.Porro, S., Temmerman, G.D., Lisgo, S., John, P., Villalpando, L., Zimmer, J.W., Johnson, B., and Wilson, J.I.B.: Nanocrystalline diamond coating of fusion plasma facing components. Diamond Relat. Mater. 18, 740744 (2009).
9.Haubner, R. and Lux, B.: Deposition of ballas diamond and nano-crystalline diamond. Int. J. Refract. Met. Hard Mater. 20, 93100 (2002).
10.Köpf, A., Haubner, R., and Lux, B.: Multilayer coatings containing diamond and other hard materials on hardmetal substrates. Int. J. Refract. Met. Hard Mater. 20, 107113 (2002).
11.Haubner, R. and Kalss, W.: Diamond deposition on hard metal substrates – comparison of substrate pre-treatments and industrial applications. Int. J. Refract. Met. Hard Mater. 28, 475483 (2010).
12.Das, D. and Singh, R.N.: A review of nucleation, growth and low temperature synthesis of diamond thin films. Int. Mater. Rev. 52, 2964 (2007).
13.Lee, S.T., Lin, Z., and Jiang, X.: CVD diamond films: Nucleation and growth. Mater. Sci. Eng., R 25, 123154 (1999).
14.Gicquel, A., Hassouni, K., Silva, F., and Achard, J.: CVD diamond films: From growth to applications. Curr. Appl. Phys. 1, 479496 (2001).
15.Liu, H. and Dandy, D.S.: Studies on nucleation process in diamond CVD: An overview of recent developments. Diamond Relat. Mater. 4, 11731188 (1995).
16.Schäfer, L., Höfer, M., and Kröger, R.: The versatility of hot-filament activated chemical vapor deposition. Thin Solid Films 515, 10171024 (2006).
17.Takeuchi, S., Oda, S., and Murakawa, M.: Synthesis of multilayer diamond film and evaluation of its mechanical properties. Thin Solid Films 398399, 238243 (2001).
18.Ali, M. and Qazi, I.A.: Effect of substrate temperature on hot filament chemical vapor deposition grown diamond films. Int. J. Surf. Sci. Eng. 6(3), 214230 (2012).
19.Frenklach, M. and Wang, H.: Detailed surface and gas-phase chemical kinetics of diamond deposition. Phys. Rev. B 43, 15201545 (1991).
20.Skokov, S., Weiner, B., and Frenklach, M.: Elementary reaction mechanism for growth of diamond (100) surfaces from methyl radicals. J. Phys. Chem. A 98, 70737082 (1994).
21.Ali, M. and Ürgen, M.: Surface morphology, growth rate and quality of diamond films synthesized in hot filament CVD system under various methane concentrations. Appl. Surf. Sci. 257, 84208426 (2011).
22.Clausing, R.E., Heatherly, L., Specht, E.D., More, K.L., and Begun, G.M.: Growth mechanism, film morphology, texture and stresses for three types of HFCVD diamond film growth. Carbon 28(6), 762763 (1990).
23.Chen, Q., Yang, J., and Lin, Z.: Synthesis of oriented textured diamond films on silicon via hot filament chemical vapor deposition. Appl. Phys. Lett. 67, 18531855 (1995).
24.Zhang, X., Shi, T., Wang, J., and Zhang, X.: Oriented growth of a diamond film on Si(100) by hot filament chemical vapor deposition. J. Cryst. Growth 155, 6669 (1995).
25.Yu, Z. and Flodström, A.: Pressure dependence of growth mode of HFCVD diamond. Diamond Relat. Mater. 6, 8184 (1997).
26.Huang, J.T., Yeh, W.Y., Hwang, J., and Chang, H.: Bias enhanced nucleation and bias textured growth of diamond on silicon (100) in hot filament chemical vapor deposition. Thin Solid Films 315, 3539 (1998).
27.Taher, M.A., Schmidt, W.F., Naseem, H.A., Brown, W.D., Malshe, A.P., and Nasrazadani, S.: Effect of methane concentration on physical properties of diamond-coated cemented carbide tool inserts obtained by hot-filament chemical vapour deposition. J. Mater. Sci. 33, 173182 (1998).
28.Shang, N., Fang, R., Liao, Y., and Cui, J.: Deposition of (100) and (110) textured diamond films on aluminum nitride ceramics via hot filament chemical vapor deposition. Jpn. J. Appl. Phys. 38, 15001502 (1999).
29.Li, C-H., Liao, Y., Chang, C., Wang, G.Z., and Fang, R.C.: The nucleation and growth of (1 0 0)-textured diamond films in presence of nitrogen. Acta Phys. Sin. 49(9), 17561763 (2000).
30.Zhang, M., Gu, B., Wang, L., and Xia, Y.: X-ray detectors based on (100)-textured CVD diamond films. Phys. Lett. A 332, 320325 (2004).
31.Zhang, M., Gu, B., Wang, L., and Xia, Y.: Preparation and characterization of (1 0 0)-textured diamond films obtained by hot filament CVD. Vacuum 79, 8489 (2005).
32.Ma, Y., Wang, L.J., Liu, J.M., Su, Q.F., Xu, R., Peng, H.Y., Shi, W.M., and Xia, Y.B.: Characterization of (1 00)-orientated diamond film grown by HFCVD method with a positive DC bias voltage. Trans. Nonferrous Met. Soc. China 16, S313S316 (2006).
33.Liao, Y., Chang, C., Li, C.H., Ye, Z.Y., Wang, G.Z., and Fang, R.C.: Two-step growth of high quality diamond films. Thin Solid Films 368, 303306 (2000).
34.Li, X., Hayashi, Y., and Nishino, S.: An improved method for large-area oriented nucleation of diamond during bias process via hot-filament chemical vapor deposition. Thin Solid Films 308309, 163167 (1997).
35.Wild, C., Kohl, R., Herres, N., Müller-Sebert, W., and Koidl, P.: Oriented CVD diamond films: Twin formation, structure and morphology. Diamond Relat. Mater. 3, 373381 (1994).
36.Heimann, B., Raiko, V., and Buck, V.: Search for scaling parameters for growth rate and purity of hot-filament CVD diamond. Int. J. Refract. Met. Hard Mater. 19, 169175 (2001).
37.Yarbrough, W.A., Tankala, K., Mecray, M., and DebRoy, T.: Hydrogen assisted heat transfer during diamond growth using carbon and tantalum filaments. Appt. Phys. Lett. 60, 20682070 (1992).
38.Cheesman, A., Harvey, J.N., and Ashfold, M.N.R.: Studies of carbon incorporation on the diamond {100} surface during chemical vapor deposition using density functional theory. J. Phys. Chem. A 112, 1143611448 (2008).
39.Singh, J.: Nucleation and growth mechanism of diamond during hot-filament chemical vapor deposition. J. Mater. Sci. 29, 27612766 (1994).
40.LeGrice, Y.M., Nemanich, R.J., Glass, J.T., Lee, Y.H., Rudder, R.A., and Markunas, R.J.: Domain size determination in diamond thin films, in Diamond, Silicon Carbide and Related Wide Bandgap Semiconductors, edited by Glass, J.T., Messier, R., and Fujimori, N. (Mater. Res. Soc. Symp. Proc. 162, Pittsburgh, PA, 1990) pp. 219224.
41.Kuo, C.T., Lin, C.R., and Lien, M.L.: Origins of the residual stress in CVD diamond films. Thin Solid Films 290291, 254259 (1996).
42.Prawer, S., Nugent, K.W., Jamieson, D.N., Orwa, J.O., Bursill, L.A., and Peng, J.L.: The Raman spectrum of nanocrystalline diamond. Chem. Phys. Lett. 332, 9397 (2000).
43.Chattopadhyay, A., Sarangi, S.K., and Chattopadhyay, A.K.: Effect of negative dc substrate bias on morphology and adhesion of diamond coating synthesized on carbide turning tools by modified HFCVD method. Appl. Surf. Sci. 255, 16611671 (2008).
44.Amaral, M., Almeida, F., Fernandes, A.J.S., Costa, F.M., Oliveira, F.J., and Silva, R.F.: The role of surface activation prior to seeding on CVD diamond adhesion. Surf. Coat. Technol. 204, 35853591 (2010).

Keywords

Related content

Powered by UNSILO

Growth of in situ multilayer diamond films by varying substrate–filament distance in hot-filament chemical vapor deposition

  • Mubarak Ali (a1) and Mustafa Ürgen (a2)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.