Skip to main content Accessibility help
×
Home

The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure

  • Lu Yuan (a1), Qike Jiang (a2), Jianbo Wang (a2) and Guangwen Zhou (a3)

Abstract

Using the thermal oxidation of iron, we show that the growth morphologies of one-dimensional nanostructures of hematite (α-Fe2O3) can be tuned by varying the oxygen gas pressure. It is found that the oxidation at the oxygen gas pressures of ∼0.1 Torr is dominated by the growth of hematite nanobelts, whereas oxidation at pressure near 200 Torr is dominated by the growth of hematite nanowires. Detailed transmission electron microscopy study shows that both the nanobelts and nanowires grow along the direction with a bicrystal structure. It is shown that nanowires are rooted on Fe2O3 grains, whereas nanobelts are originated from the boundaries of Fe2O3 grains. Our results show that oxygen gas pressure can be used to manipulate the Fe2O3/Fe3O4 interfacial reaction, thereby tailoring the oxide growth morphologies via the stress-driven diffusion.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: gzhou@binghamton.edu

References

Hide All
1.Dick, K.A.: A review of nanowire growth promoted by alloys and non-alloying elements with emphasis on Au-assisted III-V nanowires. Prog. Cryst. Growth Charact. Mater. 54, 138 (2008).
2.Lu, J., Chang, P., and Fan, Z.: Quasi-one-dimensional metal oxide materials-synthesis, properties and applications. Mater. Sci. Eng., R 52, 49 (2006).
3.Comini, E., Baratto, C., Faglia, G., Ferroni, M., Vomiero, A., and Sberveglieri, G.: Quasi-one-dimensional metal oxide semiconductors: Preparation, characterization and application as chemical sensors. Prog. Mater Sci. 54, 1 (2009).
4.Park, E., Shim, S., Ha, R., Oh, E., Lee, B.W., and Choi, H.J.: Reassembling of Ni and Pt catalyst in the vapor-liquid-solid growth of GaN nanowires. Mater. Lett. 65, 2458 (2011).
5.Paek, J., Yamaguchi, M., and Amano, H.: MBE-VLS growth of catalyst-free III-V axial heterostructure nanowires on (111)Si substrates. J. Cryst. Growth 323, 315 (2011).
6.Schwertberger, R., Gold, D., Reithmaier, J.P., and Forchel, A.: Epitaxial growth of 1.55 μm emitting InAs quantum dashes on InP-based heterostructures by GS-MBE for long-wave length laser applications. J. Cryst. Growth 251, 248 (2003).
7.Gatel, C., Tang, H., Crestou, C., Ponchet, A., Bertru, N., Dore, F., and Folliot, H.: Analysis by high-resolution electron microscopy of elastic strain in thick InAs layers embedded in Ga0.47In0.53As buffers on InP(001) substrate. Acta Mater. 58, 3238 (2010).
8.Zhang, Z.H., Sumitomo, K., Lin, F., Omi, H., and Ogino, T.: Structure transition of Ge/Si(113) surfaces during Ge epitaxial growth. Physica E 24, 157 (2004).
9.Motta, N., Sgarlata, A., Calarco, R., Nguyen, Q., Cal, J.C., Patella, F., Balzarotti, A., and De Crescenzi, M.: Growth of Ge-Si(111) epitaxial layers: Intermixing, strain relaxation and island formation. Surf. Sci. 406, 254 (1998).
10.Fan, H.J., Barnard, A.S., and Zacharias, M.: ZnO nanowires and nanobelts: Shape selection and thermodynamic modeling. Appl. Phys. Lett. 90, 143116 (2007).
11.Barnard, A.S.: A thermodynamic model for the shape and stability of twinned nanostructures. J. Phys. Chem. B 110, 24498 (2006).
12.Barnard, A.S., Xiao, Y., and Cai, Z.: Modelling the shape and orientation of ZnO nanobelts. Chem. Phys. Lett. 419, 313 (2006).
13.Jiang, X.C., Herricks, T., and Xia, Y.N.: CuO nanowires can be synthesized by heating copper substrates in air. Nano Lett. 2, 1333 (2002).
14.Zhong, M.L., Zeng, D.C., Liu, Z.W., Yu, H.Y., Zhong, X.C., and Qiu, W.Q.: Synthesis, growth mechanism and gas-sensing properties of large-scale CuO nanowires. Acta Mater. 58, 5926 (2010).
15.Xu, C.H., Woo, C.H., and Shi, S.Q.: Formation of CuO nanowires on Cu foil. Chem. Phys. Lett. 399, 62 (2004).
16.Rizzo, F., Saunders, S.R.J., and Monteiro, M.: The oxidation behaviour of metals and alloys at high temperatures in atmospheres containing water vapour: A review. Prog. Mater Sci. 53, 775 (2008).
17.Chueh, Y.L., Lai, M.W., Liang, J.Q., Chou, L.J., and Wang, Z.L.: Systematic study of the growth of aligned arrays of α-Fe2O3 and Fe3O4 nanowires by a vapor-solid process. Adv. Funct. Mater. 16, 2243 (2006).
18.Nakamura, R., Matsubayashi, G., Tsuchiya, H., Fujimoto, S., and Nakajima, H.: Formation of oxide nanotubes via oxidation of Fe, Cu and Ni nanowires and their structural stability: Difference in formation and shrinkage behavior of interior pores. Acta Mater. 57, 5046 (2009).
19.Takagi, R.: Growth of oxide whiskers on metals at high temperature. J. Phys. Soc. Jpn. 12, 1212 (1957).
20.Wen, X.G., Wang, S.H., Ding, Y., Wang, Z.L., and Yang, S.H.: Controlled growth of large-area, uniform, vertically aligned arrays of α-Fe2O3 nanobelts and nanowires. J. Phys. Chem. B 109, 215 (2005).
21.Voss, D.A., Butler, E.P., and Michell, T.E.: The growth of hematite blades during the high temperature oxidation of iron. Metall. Trans. A 13A, 929 (1982).
22.Han, Q., Xu, Y.Y., Fu, Y.Y., Zhang, H., Wang, R.M., Wang, T.M., and Chen, Z.Y.: Defects and growing mechanisms of α-Fe2O3 nanowires. Chem. Phys. Lett. 431, 100 (2006).
23.Dong, Z., Kashkarov, P., and Zhang, H.: Monte Carlo study for the growth of α-Fe2O3 nanowires synthesized by thermal oxidation of iron. Nanoscale 2, 524 (2010).
24.Hsieh, C.T., Chen, J.M., Lin, H.H., and Shih, H.C.: Synthesis of well-ordered CuO nanofibers by a self-catalytic growth mechansim. Appl. Phys. Lett. 82, 3316 (2003).
25.Huang, L.S., Yang, S.G., Li, T., Gu, B.X., Du, Y.W., Lu, Y.N., and Shi, S.Z.: Preparation of large-scale cupric oxide nanowires by thermal evaporation method. J. Cryst. Growth 260, 130 (2004).
26.Rapp, R.A.: The high temperature oxidation of metals forming cation-diffusing scales. Metall. Mater. Trans. B 15, 195 (1984).
27.Raynaud, G. and Rapp, R.: In situ observation of whiskers, pyramids and pits during the high-temperature oxidation of metals. Oxid. Met. 21, 89 (1984).
28.Kofstad, P.: High Temperature Corrosion (Elsevier Applied Science Publishers, Barking, UK, 1988, pp. 350445).
29.Goncalves, A.M., Campos, L.C., Ferlauto, A.S., and Lacerda, R.G.: On the growth and electrical characterization of CuO nanowires by thermal oxidation. J. Appl. Phys. 106, 034303 (2009).
30.Kumar, A., Srivastava, A.K., Tiwari, P., and Nandedkar, R.V.: The effect of growth parameters on the aspect ratio and number density of CuO nanorods. J. Phys. Condens. Matter 16, 8531 (2004).
31.Chen, J.T., Zhang, F., Wang, J., Zhang, G.A., Miao, B.B., Fan, X.Y., Yan, D., and Yan, P.X.: CuO nanowires synthesized by thermal oxidation route. J. Alloys Compd. 454, 268 (2008).
32.Chen, J., Xu, L., Li, W., and Gou, X.: α-Fe2O3 nanotubes in gas sensor and lithium-ion battery applications. Adv. Mater. 17, 582 (2005).
33.Wu, C., Yin, P., OuYang, C., and Xie, Y.: Synthesis of hematite (α-Fe2O3) nanorods: Diameter-size and shape effects on their applications in magnetism, lithium ion battery, and gas sensors. J. Phys. Chem. B 110, 17806 (2006).
34.Xu, Y.Y., Rui, X.F., Fu, Y.Y., and Zhang, H.: Magnetic properties of α-Fe2O3 nanowires. Chem. Phys. Lett. 410, 36 (2005).
35.Hsu, L.-C., Li, Y.-Y., Lo, C.-G., Huang, C.-W., and Chern, G.: Thermal growth and magnetic characterization of α-Fe2O3 nanowires. J. Phys. D Appl. Phys. 41, 185003 (2008).
36.Suber, L., Imperatori, P., Ausanio, G., Fabbri, F., and Hofmeister, H.: Synthesis, morphology, and magnetic characterization of iron oxide nanowires and nanotubes. J. Phys. Chem. B 109, 7103 (2005).
37.Hsu, L.-C., Li, Y.-Y., and Hsiao, C.-Y.: Synthesis, electrical measurement, and field emission properties of α-Fe2O3 nanowires. Nanoscale Res. Lett. 3, 330 (2008).
38.Peng, Y., Zhang, H.L., Pan, S.L., and Li, H.L.: Magnetic properties and magnetization reversal of α-Fe nanowires deposited in alumina film. J. Appl. Phys. 87, 7405 (2000).
39.Wang, H., Zhang, X., Liu, B., Zhao, H., Li, Y., Huang, Y., and Du, Z.: Synthesis and characterization of single crystal α-Fe2O3 nanobelts. Chem. Lett. 34, 184 (2005).
40.Zhong, L.S., Hu, J.S., Liang, H.P., Cao, A.M., Song, W.G., and Wan, L.J.: Self-assembled 3D flowerlike iron oxide nanostructures and their application in water treatment. Adv. Mater. 18, 2426 (2006).
41.Jin, J., Ohkoshi, S., and Hashimoto, K.: Giant coercive field of nanometer‐sized iron oxide. Adv. Mater. 16, 48 (2004).
42.Wu, J.J., Lee, Y.L., Chiang, H.H., and Wong, D.K.: Growth and magnetic properties of oriented α-Fe2O3 nanorods. J. Phys. Chem. B 110, 18108 (2006).
43.Cvelbar, U., Chen, Z.Q., Sunkara, M.K., and Mozetic, M.: Spontaneous growth of superstructure α-Fe2O3 nanowire and nanobelt arrays in reactive oxygen plasma. Small 4, 1610 (2008).
44.Fu, Y.Y., Chen, J., and Zhang, J.: Synthesis of Fe2O3 nanowires by oxidation of iron. Chem. Phys. Lett. 350, 491 (2001).
45.Fu, Y.Y., Wang, R.M., Xu, J., Chen, J., Yan, Y., Narlikar, A.V., and Zhang, H.: Synthesis of large arrays of aligned α-Fe2O3 nanowires. Chem. Phys. Lett. 379, 373 (2003).
46.Nasibulin, A.G., Rackauskas, S., Jiang, H., Tian, Y., Mudimela, P.R., Shandakov, S.D., Nasibulina, L.I., Sainio, J., and Kauppinen, E.I.: Simple and rapid synthesis of α-Fe2O3 nanowires under ambient conditions. Nano Res. 2, 373 (2009).
47.Chen, Z.Q., Cvelbar, U., Mozetic, M., He, J.Q., and Sunkara, M.K.: Long-range ordering of oxygen-vacancy planes in α-Fe2O3 nanowires and nanobelts. Chem. Mater. 20, 3224 (2008).
48.Wang, R.M., Chen, Y.F., Fu, Y.Y., Zhang, H., and Kisielowski, C.: Bicrystalline hematite nanowires. J. Phys. Chem. B 109, 12245 (2005).
49.Birks, N., Meier, G.H., and Pettit, F.S.: Introduction to the High Temperature Oxidation of Metals, 2nd ed. (Cambridge University Press, Cambridge, United Kingdom, 2006, pp. 8386).
50.Young, D.: High Temperature Oxidation and Corrosion of Metals (Elsevier, Oxford, United Kingdom, 2008, pp. 8591).
51.Yuan, L., Wang, Y.Q., Mema, R., and Zhou, G.W.: Driving force and growth mechanism for spontaneous oxide nanowire formation during the thermal oxidation of metals. Acta Mater. 59, 2491 (2011).
52.Mema, R., Yuan, L., Du, Q., Wang, Y.Q., and Zhou, G.W.: Effect of surface stresses on CuO nanowire growth in the thermal oxidation of copper. Chem. Phys. Lett. 512, 87 (2011).

Related content

Powered by UNSILO

The growth of hematite nanobelts and nanowires—tune the shape via oxygen gas pressure

  • Lu Yuan (a1), Qike Jiang (a2), Jianbo Wang (a2) and Guangwen Zhou (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.