Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T22:14:19.434Z Has data issue: false hasContentIssue false

Growth and structures of C60 shells

Published online by Cambridge University Press:  31 January 2011

H. Sakuma
Affiliation:
Graduate School of Integrated Science, Yokohoma City University, 22–2 Seto, Kanazawa-ku, Yokohama 236, Japan
M. Tachibana*
Affiliation:
Department of Physics, Faculty of Science, Yokohama City University, 22–2 Seto, Kanazawa-ku, Yokohama 236, Japan
H. Sugiura
Affiliation:
Department of Physics, Faculty of Science, Yokohama City University, 22–2 Seto, Kanazawa-ku, Yokohama 236, Japan
K. Kojima
Affiliation:
Department of Physics, Faculty of Science, Yokohama City University, 22–2 Seto, Kanazawa-ku, Yokohama 236, Japan
S. Ito
Affiliation:
Research Institute for Materials, Tohoku University, 2-1 Katahira-machi, Aoba-ku, Sendai 980, Japan
T. Sekiguchi
Affiliation:
Research Institute for Materials, Tohoku University, 2-1 Katahira-machi, Aoba-ku, Sendai 980, Japan
Y. Achiba
Affiliation:
Department of Chemistry, Faculty of Science, Tokyo Metropolitan University, Minami-Ohsawa, Hachioji, Tokyo 192–03, Japan
*
a)Address all correspondence to this author.
Get access

Abstract

The growth of the shells of C60 crystals was carried out under various conditions. The detailed structures of the grown shells were investigated by transmission electron microscopy and Raman spectroscopy. The shells were formed during thermal sublimation of the C60 crystals, which were irradiated with white light in air. The shells were mainly composed of a kind of amorphous carbon. From these results, it is suggested that the oxygen-induced disintegration of C60 cages is responsible for the shell formation.

Type
Articles
Copyright
Copyright © Materials Research Society 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Haluska, M., Kuzmany, H., Vybornnov, M., Rogl, P., and Fejdi, P., Appl. Phys. A 56, 161 (1993).CrossRefGoogle Scholar
2.Li, J., Mitsuki, T., Ozawa, M., Horiuchi, H., Kishio, K., Kitazawa, K., Kikuchi, K., and Achiba, Y., J. Cryst. Growth 143, 58 (1994).CrossRefGoogle Scholar
3.Li, J., Ozawa, M., Kino, M., Yoshizawa, T., Mitsuki, T., Horiuchi, H., Tachikawa, O., Kishio, K., and Kitazawa, K., Chem. Phys. Lett. 227, 572 (1994).CrossRefGoogle Scholar
4.Wang, Y., Holden, J. M., Bi, X-X., and Eklund, P. C., Chem. Phys. Lett. 217, 413 (1994).CrossRefGoogle Scholar
5.Eklund, P. C., Rao, A. M., Zhou, P., Wang, Y., and Holden, J. M., Thin Solid Films 257, 185 (1995).Google Scholar
6.Tachibana, M., Michiyama, M., Sakuma, H., Kikuchi, K., Achiba, Y., and Kojima, K., J. Cryst. Growth 166, 883 (1996).CrossRefGoogle Scholar
7.Kojima, K., Tachibana, M., Maekawa, Y., Sakuma, H., Michiyama, M., Kikuchi, K., and Achiba, Y., in Crystal Growth of Organic Materials, ACS Conference Proceedings Series, edited by Myerson, A. S., Green, D. A., and Meenan, P. (American Chemical Society, Washington, DC, 1996), p. 231.Google Scholar
8.Arai, T., Murakami, Y., Suematsu, H., Kikuchi, K., Achiba, Y., and Ikemoto, I., Solid State Commun. 84, 827 (1992).CrossRefGoogle Scholar
9.Zhou, P., Rao, A. M., Wang, K-A., Robertson, J. D., Eloi, C., Meier, M. S., Ren, S. L., Bi, X-X., and Eklund, P. C., Appl. Phys. Lett. 60, 2871 (1992).CrossRefGoogle Scholar
10.Wada, N., Gaczi, P. J., and Solin, S. A., J. Non-Cryst. Solids 35&36, 543 (1980).CrossRefGoogle Scholar
11.Elman, B. S., Shayegan, M., Dresselhaus, M. S., Mazurek, H., and Dresselhaus, G., Phys. Rev. B 25, 4142 (1982).Google Scholar
12.Dillon, R. O., Woollam, J. A., and Katkanant, V., Phys. Rev. B 29, 3482 (1984).CrossRefGoogle Scholar
13.Robertson, J., Adv. Phys. 35, 317 (1986).CrossRefGoogle Scholar
14.Dresselhaus, M. S. and Kalish, R., Ion Implantation in Diamond, Graphite and Related Materials, Springer Series in Material Science, Vol. 22 (Springer, Berlin, 1992).Google Scholar
15.Beeman, D., Silverman, J., Lynds, R., and Anderson, M. R., Phys. Rev. B 30, 870 (1984).CrossRefGoogle Scholar
16.Chen, H. S., Kortan, A. R., Haddon, R. C., Kaplan, M. L., Chen, C. H., Mujsce, A. M., Chou, H., and Fleming, D. A., Appl. Phys. Lett. 59, 2956 (1991).CrossRefGoogle Scholar
17.Kroll, G. H., Benning, P. J., Chen, Y., Ohno, T. R., Weaver, J. H., Chibante, L. P. F., and Smalley, R. E., Chem. Phys. Lett. 181, 112 (1991).CrossRefGoogle Scholar
18.McElvany, S. W., Callahan, J. H., Ross, M. M., Lamb, L. D., and Huffman, D. R., Science 260, 1632 (1993).CrossRefGoogle Scholar
19.Kastner, J. and Kuzmany, H., Appl. Phys. Lett. 65, 543 (1994).Google Scholar
20.Meinardi, F., Paleari, A., Manfredini, M., and Milani, P., Solid State Commun. 93, 335 (1994).CrossRefGoogle Scholar
21.Manfredini, M. and Milani, P., Appl. Phys. Lett. 66, 153 (1995).Google Scholar