Skip to main content Accessibility help
×
Home

Growth and characterization of gallium nitride nanowires produced on different sol-gel derived catalyst dispersed in titania and polyvinyl alcohol matrix

  • A. Chatterjee (a1), S. Chattopadhyay (a2), C.W. Hsu (a3), C.H. Shen (a2), L.C. Chen (a1), C.C. Chen (a3), K.H. Chen (a2) and H.Y. Lee (a4)...

Abstract

Sol-gel derived catalyst systems of cobalt, nickel, and iron were used in the growth of gallium nitride (GaN) nanowires by thermal chemical vapor deposition. A diffusion barrier matrix of titania (TiO2) has been used in which the catalysts were dispersed to have control of the catalyst particle sizes and hence on the size and morphology of the GaN nanowires. This single-step and cost-effective processing of the catalyst bed produced good-quality GaN naowires with comparable structural and optical properties with those previously reported. In a particular case, a stress-induced cubic admixture to the otherwise hexagonal structural symmetry was observed. The samples were characterized by high-resolution scanning electron microscopy, x-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, and cathodo-luminescence studies.

Copyright

Corresponding author

a) Address all correspondence to this author. e-mail: sur@diamond.iams.sinica.edu.tw

References

Hide All
1Lei, T., Moustakas, T.D., Graham, R.J., He, Y. and Berkowitz, S.J.: Epitaxial growth and characterization of zinc-blende gallium nitride on (001) silicon. J. Appl. Phys. 71, 4933 (1992).
2Zhou, H., Rupp, T., Phillipp, F., Henn, G., Gross, M., Ruhm, A. and Schroeder, H.: Growth and microstructural characterization of GaN films grown by laser induced reactive epitaxy. J. Appl. Phys. 93, 1933 (2003).
3Tabata, A., Enderlein, R., Leite, J.R., Silva, S.W. da, Galzerani, J.C., Schikora, D., Kloidt, M. and Lischka, K.: Comparative Raman studies of cubic and hexagonal GaN epitaxial layers. J. Appl. Phys. 79, 4137 (1996).
4Stirite, S., Ruan, J., Li, Z., Manning, N., Salvador, A., Chen, H., Smith, D.J., Choyke, W.J. and Morkoc, H.: An investigation of the properties of cubic GaN grown on GaAs by plasma assisted molecular beam epitaxy. J. Vac. Sci. Technol. B 9 1924 (1991).
5Nakamura, S.: GaN growth using GaN buffer layer. Jap. J. Appl. Phys. 30 L1705 (1991).
6Lee, I.H., Park, S.M. and Bull, X.: Deposition of cubic GaN films by reactive laser ablation of liquid gallium target in ammonia. Korean Chem. Soc. 21, 1065 (2000).
7Argoitia, A., Hayman, C.C., Angus, J.C., Wang, L., Dyck, J.S. and Kash, K.: Low pressure synthesis of bulk polycrystalline GaN. Appl. Phys. Lett. 70, 179 (1997).
8Joshkin, V.A., Roberts, J.C., Mcintosh, F.G., Bedair, S.M., Piner, E.L. and Behbehani, M.K.: Optical memory effect in GaN epitaxial films. Appl. Phys. Lett. 71, 234 (1997).
9Han, W., Fan, S., Li, Q. and Hu, Y.: Synthesis of gallium nitride nanorods through a carbon nanotube confined reaction. Science 277, 1287 (1997).
10Morales, A.M. and Lieber, C.M.: A laser ablation method for the synthesis of crystalline semiconductor nanowires. Science 279, 208 (1998).
11Xie, Y., Quian, Y., Wang, W., Zhang, S. and Zhang, Y.: A benzene thermal synthetic route to nanocrystalline GaN. Science 272, 1926 (1996).
12Hu, C.W., Bell, A., Ponce, F.A., Smith, D.J. and Tsong, I.S.T.: Growth of self assembled quantum dots via the vapor-liquid-solid mechanism. Appl. Phys. Lett. 81, 3236 (2002).
13Kim, H.M., Kim, D.S., Kim, D.Y., Kang, T.W., Cho, Y.H. and Chung, K.S.: Growth and characterization of single-crystal GaN nanorods by hydride vapor phase epitaxy. Appl. Phys. Lett. 81, 2193 (2002).
14Han, W.Q. and Zettl, A.: Pyrolysis approach to the synthesis of gallium nitride nanorods. Appl. Phys. Lett. 80, 303 (2002).
15Chen, C.C., Yeh, C.C., Chen, C.H., Yu, M.Y., Liu, H.L., Wu, J.J., Chen, K.H., Chen, L.C., Peng, J.Y. and Chen, Y.F.: Catalytic growth and characterization of gallium nitride nanowires. J. Am. Chem. Soc. 123, 2791 (2001).
16Duan, X.F. and Lieber, C.M.: Laser assisted catalytic growth of single crystal single crystal GaN nanowires. J. Am. Chem. Soc. 122, 188 (2000).
17Tang, C.C., Fan, S.S., Dang, H.Y., Li, P. and Liu, Y.M.: Simple and high yield method for synthesizing single crystal GaN nanowires. Appl. Phys. Lett. 77, 1961 (2000).
18Johnson, J., Choi, H.J., Knutsen, K.P., Schaller, R.D., Yang, P. and Saykally, R.J.: Single gallium nitride nanowire lasers. Nature Materials 1, 106 (2002).
19Liang, C.H., Chen, L.C., Huang, J.S., Chen, K.H., Hung, Y.T. and Chen, Y.F.: Selective-area growth of indium nitride nanowires on gold-patterned Si(100) substrates. Appl. Phys. Lett. 81, 22 (2002).
20Chen, L.C., Chen, K.H., Chen, C.C.: Nanobelts in Nanowires Materials Properties and Devices , edited by Wang, Z.L. (Kluwer Academic Publisher, New York, 2003)
21Lagerstedt, O. and Monemar, B.: Variation of lattice parameters in GaN with stoichiometry and doping. Phys. Rev. B 19, 3064 (1979).
22Wang, L.D. and Kwok, H.S.: Cubic aluminum nitride and gallium nitride thin films prepared by pulsed laser deposition. Appl. Surf. Sci. 154–155, 439 (2000).
23Okumura, H., Misawa, S. and Yoshida, S.: Epitaxial growth of cubic and hexagonal GaN on GaAs by gas-source molecular-beam epitaxy. Appl. Phys. Lett. 59, 1058 (1991).
24Ilegems, A.S. Barker Jr.and M.: Infrared Lattice Vibrations and Free-Electron Dispersion in GaN. Phys. Rev. B 7 743 (1973).
25Giehler, M., Ramsteiner, M., Brandt, O., Yang, H. and Ploog, K.H.: Optical phonons of hexagonal and cubic GaN studied by infrared transmission and Raman spectroscopy. Appl. Phys. Lett. 67, 733 (1995).
26Miwa, K. and Fukumoto, A.: First-principles calculation of the structural, electronic, and vibrational properties of gallium nitride and aluminum nitride. Phys. Rev. B 48 7897 (1993).
27Seo, H.W., Bae, S.Y., Park, J., Yang, H., Park, K.S. and Kim, S.: Strained gallium nitride nanowires. J. Chem. Phys. 116, 9492 (2002).
28Liu, H.L., Chen, C.C., Chia, C.T., Yeh, C.C., Chen, C.H., Yu, M.Y., Keller, S. and DenBaars, S.P.: Infrared and Raman-scattering studies in single-crystalline GaN nanowires. Chem. Phys. Lett. 345, 245 (2001).
29Perlin, P., Suski, T., Teiseyre, H., Leszcynsky, M., Grzegory, L., Jun, J., Porowski, S., Bouguslowski, P., Bemhole, J., Chervin, J.C., Polian, A. and Moustakas, T.D.: Towards the Identification of the Dominant Donor in GaN. Phys. Rev. Lett. 75, 296 (1995).
30Monemar, B.: Fundamental energy gap of GaN from photoluminescence excitation spectra. Phys. Rev. B 10, 676 (1974).
31Menninger, J., Jahn, U., Brandt, O., Yang, H. and Ploog, K.: Optical transitions in cubic GaN investigated by spatially resolved cathodoluminescence. Appl. Phys. Lett. 69, 836 (1996).
32Alves, H., Bohm, M., Hofstaetter, A., Amano, H., Einfeldt, S., Hommel, D., Hofmann, D.M. and Meyer, B.K.: Compensation mechanism in MOCVD and MBE grown GaN:Mg. Physica B 308–310, 38 (2001).
33Kim, H., Kang, T.W. and Chung, K.S.: Nanoscale Ultraviolet-Light-Emitting Diodes Using Wide-Bandgap Gallium Nitride Nanorods Advanced Materials. Adv. Mater. 15, 567 (2003).
34Saarinen, K., Laine, T., Kuisma, S., Nissila, J., Hautojarvil, P., Dobrzynski, L., Baranowski, J.M., Pakula, K., Stepniewski, R., Wojdak, M., Wysmolek, A., Suski, T., Leszcynsky, M., Grzegory, L. and Porowski, S.: Observation of Native Ga Vacancies in GaN by Positron Annihilation. Phys. Rev. Lett. 79, 3030 (1997).

Keywords

Related content

Powered by UNSILO

Growth and characterization of gallium nitride nanowires produced on different sol-gel derived catalyst dispersed in titania and polyvinyl alcohol matrix

  • A. Chatterjee (a1), S. Chattopadhyay (a2), C.W. Hsu (a3), C.H. Shen (a2), L.C. Chen (a1), C.C. Chen (a3), K.H. Chen (a2) and H.Y. Lee (a4)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.