Skip to main content Accessibility help
×
Home

Graphene-induced confined crystal growth of octahedral Zn2SnO4 and its improved Li-storage properties

  • Wentao Song (a1), Jian Xie (a1), Shuangyu Liu (a1), Gaoshao Cao (a1), Tiejun Zhu (a1) and Xinbing Zhao (a1)...

Abstract

A Zn2SnO4/graphene (Zn2SnO4/G) hybrid was prepared by a facile one-pot hydrothermal route using SnCl4·5H2O, ZnSO4·7H2O, and graphite oxide as the precursors and NaOH as the mineralizer. Microsized Zn2SnO4 crystals with an octahedral shape are firmly confined by the graphene sheets, forming a unique hybrid structure. The confining effect of graphene leads to a more homogeneous size distribution of Zn2SnO4 crystals in Zn2SnO4/G than in bare Zn2SnO4. The introduction of graphene also brings an improved Li-storage performance for Zn2SnO4 due to the combined buffering, conducting, and confining effects of graphene. After being cycled at 200 mA/g for 50 times, Zn2SnO4/G can still keep a charge capacity of 326 mAh/g, while for bare Zn2SnO4, its charge capacity drops to only 100 mAh/g after the same cycles.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: xiejian1977@zju.edu.cn

References

Hide All
1.Idota, Y., Kubota, T., Matsufuji, A., Maekawa, Y., and Miyasaka, T.: Tin-based amorphous oxide: A high-capacity lithium-ion-storage material. Science 276, 1395 (1997).
2.Courtney, I.A. and Dahn, J.R.: Electrochemical and in situ x-ray diffraction studies of the reaction of lithium with tin oxide composite. J. Electrochem. Soc. 144, 2045 (1997).
3.Huggins, R.A.: Lithium alloy negative electrodes. J. Power Sources 8182, 13 (1999).
4.Li, H., Huang, X.J., and Chen, L.Q.: Anodes based on oxide materials for lithium rechargeable batteries. Solid State Ionics 123, 189 (1999).
5.Wang, H.B., Pan, Q.M., Cheng, Y.X., Zhao, J.W., and Yin, G.P.: Evaluation of ZnO nanorod arrays with dandelion-like morphology as negative electrodes for lithium-ion batteries. Electrochim. Acta 54, 2851 (2009).
6.Sharma, Y., Sharma, N., Subba Rao, G.V., and Chowdari, B.V.R.: Nanophase ZnCo2O4 as a high performance anode material for Li-ion batteries. Adv. Funct. Mater. 1728, 2855 (2007).
7.Xiao, L.F., Zhao, Y.Q., Yin, J., and Zhang, L.Z.: Clewlike ZnV2O4 hollow spheres: Nonaqueous sol-gel synthesis, formation mechanism, and lithium storage properties. Chem. Eur. J. 15, 9442 (2009).
8.Wang, G., Gao, X.P., and Shen, P.W.: Hydrothermal synthesis of Co2SnO4 nanocrystals as anode materials for Li-ion batteries. J. Power Sources 192, 719 (2009).
9.Guo, X.W., Lu, X., Fang, X.P., Mao, Y., Wang, Z.X., Chen, L.Q., Xu, X.X., Yang, H., and Liu, Y.N.: Lithium storage in hollow spherical ZnFe2O4 as anode materials for lithium ion. Electrochem. Commun. 12, 847 (2010).
10.Fen, T.P., Yogesh, S., and Snellius, P.S.: Nanoweb anodes composed of one-dimensional, high aspect ratio, size tunable electrospun ZnFe2O4 nanofibers for lithium ion batteries. J. Mater. Chem. 21, 14999 (2011).
11.Lavela, P. and Tirado, J.L.: CoFe2O4 and NiFe2O4 synthesized by sol-gel procedures for their use as anode materials for Li ion batteries. J. Power Sources 172, 379 (2007).
12.Deng, Y.F., Zhang, Q.M., Tang, S.D., Zhang, L.T., Deng, S.N., Shi, Z.C., and Chen, G.H.: One-pot synthesis of ZnFe2O4/C hollow spheres as superior anode materials for lithium ion batteries. Chem. Commun. 47, 6828 (2011).
13.Qi, Y., Du, N., Zhang, H., Wu, P., and Yang, D.R.: Synthesis of Co2SnO4@C core–shell nanostructures with reversible lithium storage. J. Power Sources 196, 10234 (2011).
14.Wang, G., Liu, Z.Y., and Liu, P.: Co2SnO4–multiwalled carbon nanotubes composite as a highly reversible anode material for lithium-ion batteries. Electrochim. Acta 56, 9515 (2011).
15.Belliard, F., Connor, P.A., and Irvine, J.T.S.: Novel tin oxide-based anodes for Li-ion batteries. Solid State Ionics 135, 163 (2000).
16.Rong, A., Gao, X.P., Li, G.R., Yan, T.Y., Zhu, H.Y., Qu, J.Q., and Song, D.Y.: Hydrothermal synthesis of Zn2SnO4 as anode materials for Li-ion battery. J. Phys. Chem. B 110, 14754 (2006).
17.Zheng, X.Z., Li, Y.F., Xu, Y.X., Hong, Z.S., and Wei, M.D.: Metal-organic frameworks: Promising materials for enhancing electrochemical properties of nanostructured Zn2SnO4 anode in Li-ion batteries. CrystEngComm 14, 2112 (2012).
18.Chen, H.Y., Wang, J.X., Yu, H.C., Yang, H.X., Xie, S.S., and Li, J.Q.: Transmission electron microscopy study of pseudoperiodically twinned Zn2SnO4 nanowires J. Phys. Chem. B 109, 2573 (2005).
19.Nikolić, N., Srećković, T., and Ristić, M.M.: The influence of mechanical activation on zinc stannate spinel formation. J. Eur. Ceram. Soc. 21, 2071 (2001).
20.Baruah, S. and Dutta, J.: Zinc stannate nanostructures: Hydrothermal synthesis. Sci. Technol. Adv. Mater. 12, 013004 (2011).
21.Li, D., Müller, M.B., Gilje, S., Kaner, R.B., and Wallace, G.G.: Processable aqueous dispersions of graphene nanosheets. Nat. Nanotechnol. 3, 101 (2008).
22.Hummers, W.S. and Offeman, R.E.: Preparation of graphitic oxide. J. Am. Chem. Soc. 80, 1339 (1958).
23.Zhang, C.M., Zhu, J.X., Rui, X.H., Chen, J., Sim, D.H., Shi, W.H., Hng, H.H., Lim, T.M., and Yan, Q.Y.: Synthesis of hexagonal-symmetry alpha-iron oxyhydroxide crystals using reduced graphene oxide as a surfactant and their Li storage properties. CrystEngComm 14, 147 (2012).
24.Shin, H.J., Kim, K.K., Benayad, A., Yoon, S.M., Park, H.K., Jung, I.S., Jin, M.H., Jeong, H.K., Kim, J.M., Choi, J.Y., and Lee, Y.H.: Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv. Funct. Mater. 19, 1987 (2009).
25.Miyauchi, M., Liu, Z.F., Zhao, Z.G., Anandan, S., and Hara, K.: Single crystalline zinc stannate nanoparticles for efficient photo-electrochemical devices. Chem. Commun. 46, 1529 (2010).
26.Zeng, J., Xin, M.D., Li, K.W., Wang, H., Yan, H., and Zhang, W.J.: Transformation process and photocatalytic activities of hydrothermally synthesized Zn2SnO4 nanocrystals. J. Phys. Chem. C 112, 4159 (2008).
27.Zhu, H.L., Yang, D.R., Yu, G.X., Zhang, H., Jin, D.L., and Yao, K.H.: Hydrothermal synthesis of Zn2SnO4 nanorods in the diameter regime of sub-5 nm and their properties. J. Phys. Chem. B 110, 7631 (2006).
28.Lana-Villarreal, T., Boschloo, G., and Hagfeldt, A.: Nanostructured zinc stannate as semiconductor working electrodes for dye-sensitized solar cells. J. Phys. Chem. C 111, 5549 (2007).
29.Ji, G., Ma, Y., and Lee, J.Y.: Mitigating the initial capacity loss (ICL) problem in high-capacity lithium ion battery anode materials. J. Mater. Chem. 21, 9819 (2011).
30.Seonga, I.W., Kim, K.T., and Yoon, W.Y.: Electrochemical behavior of a lithium-pre-doped carbon-coated silicon monoxide anode cell. J. Power Sources 189, 511 (2009).
31.Liu, S.Y., Xie, J., Zheng, Y.X., Cao, G.S., Zhu, T.J., and Zhao, X.B.: Nanocrystal manganese oxide (Mn3O4, MnO) anchored on graphite nanosheet with improved electrochemical Li-storage properties. Electrochim. Acta 66, 271 (2012).
32.Stoller, M.D., Park, S., Zhu, Y.W., An, J.H., and Ruoff, R.S.: Graphene-based ultracapacitor. Nano Lett. 8, 3498 (2008).
33.Lee, C., Wei, X.D., Kysar, J.W., and Hone, J.: Measurement of the elastic properties and intrinsic strength of monolayer graphene. Science 321, 385 (2008).
34.Park, S., An, J.H., Jung, I.W., Piner, R.D., An, S.J., Li, X.S., Velamakanni, A., and Ruoff, R.S.: Colloidal suspensions of highly reduced graphene oxide in a wide variety of organic solvents. Nano Lett. 9, 1593 (2009).
35.Liang, Y.F., Huang, S.T., and Yang, L.: Many-electron effects on optical absorption spectra of strained graphene. J. Mater. Res. 27, 403 (2012).
36.Novoselov, K.S., Geim, A.K., Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V., and Firsov, A.A.: Electric filed effect in atomically thin carbon films. Science 306, 666 (2004).
37.Yuan, W.S., Tian, Y.W., and Liu, G.Q.: Synthesis and electrochemical properties of pure phase Zn2SnO4 and composite Zn2SnO4/C. J. Alloys Compd. 506, 683 (2010).
38.Hou, X.H., Cheng, Q., Bai, Y., and Zhang, W.F.: Preparation and electrochemical characterization of Zn2SnO4 as anode materials for lithium ion batteries. Solid State Ionics 181, 631 (2010).
39.Feng, N., Peng, S.L., Sun, X.L., Qiao, L., Li, X.W., Wang, P., Hu, D.K., and He, D.Y.: Synthesis of monodisperse single crystal Zn2SnO4 cubes with high lithium storage capacity. Mater. Lett. 76, 66 (2012).

Related content

Powered by UNSILO

Graphene-induced confined crystal growth of octahedral Zn2SnO4 and its improved Li-storage properties

  • Wentao Song (a1), Jian Xie (a1), Shuangyu Liu (a1), Gaoshao Cao (a1), Tiejun Zhu (a1) and Xinbing Zhao (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.