Skip to main content Accessibility help
×
Home

Graphene/chitosan-functionalized iron oxide nanoparticles for biomedical applications

  • Suresh Bandi (a1), Vikram Hastak (a1), Chokkakula L.P. Pavithra (a2), Sanjay Kashyap (a3), Dhananjay Kumar Singh (a4), Suaib Luqman (a5), Dilip R. Peshwe (a1) and Ajeet K. Srivastav (a1)...

Abstract

Superparamagnetic iron oxide nanoparticles are well known for biomedical applications. The particle size, morphology, surface area, and functionalization are the key parameters that affect their bioactivity properties. Inline to this, the superparamagnetic Fe3O4 nanoparticles were prepared via chemical coprecipitation method with an average particle size of 6 ± 3 nm. The particles were surface-functionalized with chitosan and in-house prepared reduced graphene oxide (rGO) to obtain chitosan-coated Fe3O4 nanoparticles (C-Fe3O4) and rGO-Fe3O4 nanocomposites (G-Fe3O4), respectively. Upon functionalization, the physicochemical properties of the materials were characterized thoroughly using X-ray diffraction, transmission electron microscopy, vibrating sample magnetometer, Raman Spectroscopy, and thermal gravimetric analysis. Furthermore, they have subjected to cytotoxicity assay, agar two-fold broth dilution test, and disc diffusion assay experiments for the determination of cytotoxicity and antibacterial activities. The effect of surface functionalization on their bioactivity was investigated thoroughly. The surface functionalization with chitosan and rGO has enhanced the bioactivity of the Fe3O4 nanoparticles.

Copyright

Corresponding author

a)Address all correspondence to this author. e-mail: srivastav.ajeet.kumar@gmail.com, ajeet.srivastav@mme.vnit.ac.in

Footnotes

Hide All
b)

These authors contributed equally to this work.

Footnotes

References

Hide All
1.Nazarenus, M., Zhang, Q., Soliman, M.G., del Pino, P., Pelaz, B., Carregal-Romero, S., Rejman, J., Rothen-Rutishauser, B., Clift, M.J.D., Zellner, R., Nienhaus, G.U., Delehanty, J.B., Medintz, I.L., and Parak, W.J.: In vitro interaction of colloidal nanoparticles with mammalian cells: What have we learned thus far? Beilstein J. Nanotechnol. 5, 1477 (2014).
2.Baldi, G., Bonacchi, D., Innocenti, C., Lorenzi, G., and Sangregorio, C.: Cobalt ferrite nanoparticles: The control of the particle size and surface state and their effects on magnetic properties. J. Magn. Magn. Mater. 311, 10 (2007).
3.Song, Q. and Zhang, Z.J.: Shape control and associated magnetic properties of spinel cobalt ferrite nanocrystals. J. Am. Chem. Soc. 126, 6164 (2004).
4.Kucheryavy, P., He, J., John, V.T., Maharjan, P., Spinu, L., Goloverda, G.Z., and Kolesnichenko, V.L.: Superparamagnetic iron oxide nanoparticles with variable size and an iron oxidation state as prospective imaging agents. Langmuir 29, 710 (2013).
5.Frey, N.A., Peng, S., Cheng, K., and Sun, S.: Magnetic nanoparticles: Synthesis, functionalization, and applications in bioimaging and magnetic energy storage. Chem. Soc. Rev. 27, 2532 (2009).
6.Polshettiwar, V., Luque, R., Fihri, A., Zhu, H., Bouhrara, M., and Basset, J.M.: Magnetically recoverable nanocatalysts. Chem. Rev. 111, 3036 (2011).
7.Mangrulkar, P.A., Polshettiwar, V., Labhsetwar, N.K., Varma, R.S., and Rayalu, S.S.: Nano-ferrites for water splitting: Unprecedented high photocatalytic hydrogen production under visible light. Nanoscale 4, 5202 (2012).
8.Goncalves, R.H. and Leite, E.R.: Nanostructural characterization of mesoporous hematite thin film photoanode used for water splitting. J. Mater. Res. 29, 47 (2014).
9.Kumar, C.S.S.R. and Mohammad, F.: Magnetic nanomaterials for hyperthermia-based therapy and controlled drug delivery. Adv. Drug Delivery Rev. 63, 789 (2011).
10.Salunkhe, A.B., Khot, V.M., and Pawar, S.H.: Magnetic hyperthermia with magnetic nanoparticles: A status review. Curr. Top. Med. Chem. 14, 572 (2014).
11.Qiao, R., Yang, C., and Gao, M.: Superparamagnetic iron oxide nanoparticles: From preparations to in vivo MRI applications. J. Mater. Chem. 19, 6274 (2009).
12.Macher, T., Totenhagen, J., Sherwood, J., Qin, Y., Gurler, D., Bolding, M.S., and Bao, Y.: Ultrathin iron oxide nanowhiskers as positive contrast agents for magnetic resonance imaging. Adv. Funct. Mater. 25, 490 (2015).
13.Iv, M., Telischak, N., Feng, D., Holdsworth, S., Yeom, K., and Daldrup-Link, H.: Clinical applications of iron oxide nanoparticles for magnetic resonance imaging of brain tumors. Nanomedicine 10, 993 (2015).
14.Goodwill, P.W. and Conolly, S.M.: Experimental demonstration of X-space magnetic particle imaging. SPIE Proc. Med. Imaging 7965, 79650U (2011).
15.Ferguson, R.M., Khandhar, A.P., and Krishnan, K.M.: Tracer design for magnetic particle imaging (invited). J. Appl. Phys. 111, 07B318 (2012).
16.Tomitaka, A., Arami, H., Gandhi, S., and Krishnan, K.M.: Lactoferrin conjugated iron oxide nanoparticles for targeting brain glioma cells in magnetic particle imaging. Nanoscale 7, 16890 (2015).
17.Marszałł, M.P.: Application of magnetic nanoparticles in pharmaceutical sciences. Pharm. Res. 28, 480 (2011).
18.Zhang, G., Qie, F., Hou, J., Luo, S., Luo, L., Sun, X., and Tan, T.: One-pot solvothermal method to prepare functionalized Fe3O4 nanoparticles for bioseparation. J. Mater. Res. 27, 1006 (2012).
19.Widder, K.J., Senyei, A.E., and Scarpelli, D.G.: Magnetic microspheres: A model system for site specific drug delivery in vivo. Exp. Biol. Med. 158, 141 (1978).
20.Laurent, S., Dutz, S., Häfeli, U.O., and Mahmoudi, M.: Magnetic fluid hyperthermia: Focus on superparamagnetic iron oxide nanoparticles. Adv. Colloid Interface Sci. 166, 8 (2011).
21.Assa, F., Jafarizadeh-Malmiri, H., Ajamein, H., Vaghari, H., Anarjan, N., Ahmadi, O., and Berenjian, A.: Chitosan magnetic nanoparticles for drug delivery systems. Crit. Rev. Biotechnol. 37, 492 (2017).
22.Salehizadeh, H., Hekmatian, E., Sadeghi, M., and Kennedy, K.: Synthesis and characterization of core–shell Fe3O4–gold–chitosan nanostructure. J. Nanobiotechnol. 10, 3 (2012).
23.Roper, P.R. and Drewinko, B.: Comparison of in vitro methods to determine drug-induced cell lethality. Cancer Res. 36, 2182 (1976).
24.Valgas, C., Machado de Souza, S., A Smânia, E.F., and Smânia, A. Jr: Screening methods to determine antibacterial activity of natural products. Braz. J. Microbiol. 38, 369 (2007).
25.Perreault, F., De Faria, A.F., Nejati, S., and Elimelech, M.: Antimicrobial properties of graphene oxide nanosheets: Why size matters. ACS Nano 9, 7226 (2015).
26.Gurunathan, S., Woong Han, J., Eppakayala, V., and Kim, J.: Green synthesis of graphene and its cytotoxic effects in human breast cancer cells. Int. J. Nanomed. 8, 1015 (2013).
27.Santos, C.M., Mangadlao, J., Ahmed, F., Leon, A., Advincula, R.C., and Rodrigues, D.F.: Graphene nanocomposite for biomedical applications: Fabrication, antimicrobial and cytotoxic investigations. Nanotechnology 23, 395101 (2012).
28.Pelin, M., Fusco, L., León, V., Martín, C., Criado, A., Sosa, S., Vázquez, E., Tubaro, A., and Prato, M.: Differential cytotoxic effects of graphene and graphene oxide on skin keratinocytes. Sci. Rep. 7, 1 (2017).
29.Hastak, V., Bandi, S., Kashyap, S., Singh, S., Luqman, S., Lodhe, M., Peshwe, D.R., and Srivastav, A.K.: Antioxidant efficacy of chitosan/graphene functionalized superparamagnetic iron oxide nanoparticles. J. Mater. Sci.: Mater. Med. 29, 154 (2018).
30.Yang, Z., Hao, X., Chen, S., Ma, Z., Wang, W., Wang, C., Yue, L., Sun, H., Shao, Q., Murugadoss, V., and Guo, Z.: Long-term antibacterial stable reduced graphene oxide nanocomposites loaded with cuprous oxide nanoparticles. J. Colloid Interface Sci. 533, 13 (2019).
31.Jedrzejczak-Silicka, M.: Cytotoxicity and genotoxicity of GO–Fe3O4 hybrid in cultured mammalian cells. Pol. J. Chem. Technol. 19, 27 (2017).
32.Gade, N.E., Dar, R.M., Mishra, O.P., Khan, J.R., Kumar, V., and Patyal, A.: Evaluation of dose-dependent cytotoxic effects of graphene oxide-iron oxide nanocomposite on caprine Wharton’s jelly derived mesenchymal stem cells. J. Anim. Res. 5, 415 (2015).
33.Gatta, G.D., Kantor, I., Ballaran, T.B., Dubrovinsky, L., and Mccammon, C.: Effect of non-hydrostatic conditions on the elastic behaviour of magnetite: An in situ single-crystal X-ray diffraction study. Phys. Chem. Miner. 34, 627 (2007).
34.Prince, E., Prince, E., and Stalick, J.K.: Accuracy in Powder Diffraction II, Vol. 846 (NIST Special Publicaiton, Gaithersburg, MD, 1992).
35.Srivastav, A.K., Panindre, A.M., and Murty, B.S.: XRD characterization of microstructural evolution during mechanical alloying of W–20 wt% Mo. Trans. Indian Inst. Met. 66, 409 (2013).
36.Bandi, S., Hastak, V., Peshwe, D.R., and Srivastav, A.K.: In situ TiO2–rGO nanocomposites for CO gas sensing. Bull. Mater. Sci. 41, 115 (2018).
37.Balzar, D. and Ledbetter, H.: Voigt-function modeling in Fourier analysis of size-and strain-broadened X-ray diffraction peaks. J. Appl. Crystallogr. 26, 97 (1993).
38.Balzar, D.: NIST (2012). Available at: http://www.boulder.nist.gov/div853/balzar/breadth.htm.
39.Srivastav, A.K., Basu, J., Kashyap, S., Chawake, N., Yadav, D., and Murty, B.S.: Crystallographic-shear-phase-driven W18O49 nanowires growth on nanocrystalline W surfaces. Scr. Mater. 115, 28 (2016).
40.Cullity, B.D. and Graham, C.D.: Introduction to Magnetic Materials (John Wiley & Sons, Inc., Hoboken, New Jersey, 2008). ISBN: 978-0-471-47741-9 47741.
41.Padalia, D., Johri, U.C., and Zaidi, M.G.H.: Study of cerium doped magnetite (Fe3O4:Ce)/PMMA nanocomposites. Phys. B 407, 838 (2012).
42.Pham, X.N., Nguyen, T.P., Pham, T.N., Tran, T.T.N., and Tran, T.V.T.: Synthesis and characterization of chitosan-coated magnetite nanoparticles and their application in curcumin drug delivery. Adv. Nat. Sci. Nanosci. Nanotechnol. 7, 045010 (2016).
43.Safari, J. and Javadian, L.: Chitosan decorated Fe3O4 nanoparticles as a magnetic catalyst in the synthesis of phenytoin derivatives. RSC Adv. 4, 48973 (2014).
44.Karimzadeh, I., Aghazadeh, M., Doroudi, T., Ganjali, M.R., and Kolivand, P.H.: Electrochemical preparation and characterization of chitosan-coated superparamagnetic iron oxide (Fe3O4) nanoparticles. Mater. Res. Innovations 1 (2017).
45.Bin Wu, J., Lin, M.L., Cong, X., Liu, H.N., and Tan, P.H.: Raman spectroscopy of graphene-based materials and its applications in related devices. Chem. Soc. Rev. 47, 1822 (2018).
46.Mura, S., Jiang, Y., Vassalini, I., Gianoncelli, A., Alessandri, I., Granozzi, G., Calvillo, L., Senes, N., Enzo, S., Innocenzi, P., and Malfatti, L.: Graphene oxide/iron oxide nanocomposites for water remediation. ACS Appl. Nano Mater. 1, 6724 (2018).
47.Wall, M.: The Raman spectroscopy of graphene and the determination of layer thickness. Thermo Sci. Appl., 52252 (2011). Available at: http://tools.thermofisher.com/content/sfs/brochures/AN52252_E%201111%20LayerThkns_H_1.pdf.
48.Bandi, S., Ravuri, S., Peshwe, D.R., and Srivastav, A.K.: Graphene from discharged dry cell battery electrodes. J. Hazard. Mater. 366, 358 (2019).
49.Wang, H., Wang, Y., Cao, X., Feng, M., and Lan, G.: Vibrational properties of graphene and graphene layers. J. Raman Spectrosc. 40, 1791 (2009).
50.Corazzari, I., Nisticò, R., Turci, F., Faga, M.G., Franzoso, F., Tabasso, S., and Magnacca, G.: Advanced physico-chemical characterization of chitosan by means of TGA coupled on-line with FTIR and GCMS: Thermal degradation and water adsorption capacity. Polym. Degrad. Stab. 112, 1 (2015).
51.Hasan, A., Waibhaw, G., Tiwari, S., Dharmalingam, K., Shukla, I., and Pandey, L.M.: Fabrication and characterization of chitosan, polyvinylpyrrolidone, and cellulose nanowhiskers nanocomposite films for wound healing drug delivery application. J. Biomed. Mater. Res., Part A 105, 2391 (2017).
52.Tayyebi, A. and Outokesh, M.: Supercritical synthesis of a magnetite-reduced graphene oxide hybrid with enhanced adsorption properties toward cobalt & strontium ions. RSC Adv. 6, 13898 (2016).
53.Shi, S.F., Jia, J.F., Guo, X.K., Zhao, Y.P., Chen, D.S., Guo, Y.Y., Cheng, T., and Zhang, X.L.: Biocompatibility of chitosan-coated iron oxide nanoparticles with osteoblast cells. Int. J. Nanomedicine 7, 5593 (2012).
54.Kavinkumar, T., Varunkumar, K., Ravikumar, V., and Manivannan, S.: Anticancer activity of graphene oxide-reduced graphene oxide–silver nanoparticle composites. J. Colloid Interface Sci. 505, 1125 (2017).
55.Andrews, J.M.: Determination of minimum inhibitory concentrations. J. Antimicrob. Chemother. 48, 5 (2001).
56.Uygur, B., Craig, G., Mason, M.D., and Ng, A.K.: Cytotoxicity and Genotoxicity of Silver Nanoparticles in Human Cells. Tech. Proc. 2009 NSTI Nanotechnol. Conf. Expo, NSTI-Nanotech 2009 2, 383 (2009).
57.Hussain, S.M., Hess, K.L., Gearhart, J.M., Geiss, K.T., and Schlager, J.J.: In vitro toxicity of nanoparticles in BRL 3A rat liver cells. Toxicol. In Vitro 19, 975 (2005).
58.Padhi, D.K., Panigrahi, T.K., Parida, K., Singh, S.K., and Mishra, P.M.: Green synthesis of Fe3O4/RGO nanocomposite with enhanced photocatalytic performance for Cr(VI) reduction, phenol degradation, and antibacterial activity. ACS Sustainable Chem. Eng. 5, 10551 (2017).
59.Nayamadi Mahmoodabadi, A., Kompany, A., and Mashreghi, M.: Characterization, antibacterial and cytotoxicity studies of graphene–Fe3O4 nanocomposites and Fe3O4 nanoparticles synthesized by a facile solvothermal method. Mater. Chem. Phys. 213, 285 (2018).
60.Lee, C., Kim, J.Y., Il Lee, W., Nelson, K.L., Yoon, J., and Sedlak, D.L.: Bactericidal effect of zero-Valent iron nanoparticles on Escherichia coli. Environ. Sci. Technol. 42, 4927 (2008).
61.Srivastava, V., Darokar, M.P., Fatima, A., Kumar, J.K., Chowdhury, C., Saxena, H.O., Dwivedi, G.R., Shrivastava, K., Gupta, V., Chattopadhyay, S.K., Luqman, S., Gupta, M.M., Negi, A.S., and Khanuja, S.P.S.: Synthesis of diverse analogues of Oenostacin and their antibacterial activities. Bioorg. Med. Chem. 15, 518 (2007).
62.Luqman, S., Dwivedi, G.R., Darokar, M.P., Kalra, A., and Khanuja, S.P.S.: Antimicrobial activity of Eucalyptus citriodora essential oil. Int. J. Essent. Oil Ther. 2, 69 (2008).

Keywords

Graphene/chitosan-functionalized iron oxide nanoparticles for biomedical applications

  • Suresh Bandi (a1), Vikram Hastak (a1), Chokkakula L.P. Pavithra (a2), Sanjay Kashyap (a3), Dhananjay Kumar Singh (a4), Suaib Luqman (a5), Dilip R. Peshwe (a1) and Ajeet K. Srivastav (a1)...

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed