Hostname: page-component-8448b6f56d-mp689 Total loading time: 0 Render date: 2024-04-25T05:19:26.967Z Has data issue: false hasContentIssue false

Grain size effects in nanocrystalline materials

Published online by Cambridge University Press:  31 January 2011

C. Suryanarayana
Affiliation:
Institute for Materials and Advanced Processes, University of Idaho, Moscow, Idaho 83843-4195
D. Mukhopadhyay
Affiliation:
Institute for Materials and Advanced Processes, University of Idaho, Moscow, Idaho 83843-4195
S.N. Patankar
Affiliation:
Institute for Materials and Advanced Processes, University of Idaho, Moscow, Idaho 83843-4195
F.H. Froes
Affiliation:
Institute for Materials and Advanced Processes, University of Idaho, Moscow, Idaho 83843-4195
Get access

Abstract

Nanocrystalline materials have a grain size of only a few nanometers and are expected to possess very high hardness and strength values. Even though the hardness/strength is expected to increase with a decrease in grain size, recent observations have indicated that the hardness increases in some cases and decreases in other cases. A careful analysis of the available results on the basis of existing models suggests that there is a critical grain size below which the triple junction volume fraction increases considerably over the grain boundary volume fraction and this is suggested to be responsible for the observed softening at small grain sizes.

Type
Articles
Copyright
Copyright © Materials Research Society 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

1.Gleiter, H., Prog. Mater. Sci. 33, 223 (1989).CrossRefGoogle Scholar
2.Birringer, R., Mater. Sci. and Engg. A117, 33 (1989).CrossRefGoogle Scholar
3.Suryanarayana, C. and Froes, F. H., in Physical Chemistry of Powder Metals Production and Processing, edited by Murray, W. Small (TMS, Warrendale, PA, 1989), p. 279; Metall. Trans. A23, 1071 (1992).Google Scholar
4.Siegel, R. W., MRS Bulletin XV (10), 60 (1990).Google Scholar
5.Bickerdike, R. L., Clark, D., Easterbrook, J. N., Hughes, G., Mair, W. N., Partridge, P. G., and Ranson, H. C., Int. J. Rapid Solidification 1, 305 (19841985).Google Scholar
6.Chokshi, A. H., Rosen, A., Karch, J., and Gleiter, H., Scripta Metall. 23, 1679 (1989).CrossRefGoogle Scholar
7.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. 23, 2013 (1989).CrossRefGoogle Scholar
8.Nieman, G. W., Weertman, J. R., and Siegel, R. W., in Clusters and Cluster-Assembled Materials, edited by Averback, R. S., Bernholc, J., and Nelson, D. L. (Mater. Res. Soc. Symp. Proc. 206, Pittsburgh, PA, 1991), p. 581.Google Scholar
9.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Scripta Metall. et Mater. 24, 145 (1990).CrossRefGoogle Scholar
10.Jang, J. S. C. and Koch, C. C., Scripta Metall. et Mater. 24, 1599 (1990).CrossRefGoogle Scholar
11.Hughes, G. D., Smith, S. D., Pande, C. S., Johnson, H. R., and Armstrong, R. W., Scripta Metall. 20, 93 (1986).CrossRefGoogle Scholar
12.Hofler, H. and Averback, R. S., Scripta Metall. et Mater. 24, 2401 (1990).CrossRefGoogle Scholar
13.Koch, C. C. and Cho, Y. S., Nanostructured Materials 1 (1992, in press).CrossRefGoogle Scholar
14.Lu, K., Wei, W. D., and Wang, J. T., Scripta Metall. et Mater. 24, 2319 (1990).CrossRefGoogle Scholar
15.McMahon, G. and Erb, U., Microstructural Sci. 17, 447 (1989).Google Scholar
16.Ostrander, D. and Erb, U., Scripta Metall. et Mater, (in press).Google Scholar
17.Nieman, G. W., Weertman, J. R., and Siegel, R. W., Nanostructured Materials 1 (1992, in press).CrossRefGoogle Scholar
18.Tabor, D., The Hardness of Metals (Clarendon Press, Oxford, England, 1951).Google Scholar
19.Lasalmonie, A. and Strudel, J. L., J. Mater. Sci. 21, 1837 (1986).CrossRefGoogle Scholar
20.Nieman, G. W. and Weertman, J. R., in Proc. Morris E. Fine Symposium (TMS, Warrendale, PA, Fall 1990, in press).Google Scholar
21.Armstrong, R. W., in Yield, Flow and Fracture of Polycrystals, edited by Baker, T. N. (Applied Sci. Publ., London, England, 1983), p. 1.Google Scholar
22.Gryaznov, V. G., Solov'ev, V. A., and Trusov, L. I., Scripta Metall. et Mater. 24, 1529 (1990).CrossRefGoogle Scholar
23.Nieh, T. G. and Wadsworth, J., Scripta Metall. et Mater. 25, 955 (1991).CrossRefGoogle Scholar
24.Palumbo, G., Thorpe, S. J., and Aust, K. T., Scripta Metall. et Mater. 24, 1347 (1990).CrossRefGoogle Scholar
25.Bollman, W., Philos. Mag. A49, 73 (1984).CrossRefGoogle Scholar
26.Bollman, W., Philos. Mag. A57, 637 (1988).CrossRefGoogle Scholar
27.Bollman, W., Mater. Sci. and Engg. A113, 129 (1989).CrossRefGoogle Scholar
28.Rabukhin, V. B., Phys. Met. Metallogr. 61, 149 (1986).Google Scholar
29.Palumbo, G., Erb, U., and Aust, K. T., Scripta Metall. et Mater. 24, 2347 (1990).CrossRefGoogle Scholar
30.Kim, D. K. and Okazaki, K., Mater. Sci. Forum 8890, 553 (1992).Google Scholar
31.Rosenhain, W. and Owen, D., J. Inst. Metals 10, 119 (1913).Google Scholar
32.Meyers, M. A. and Ashworth, E., Philos. Mag. A46, 737 (1982).CrossRefGoogle Scholar
33.Saito, K., Iwamoto, M., Nomura, Y., and Nakamura, T., in Micromechanics and Inhomogeneity, edited by Weng, G. J.et al. (Springer-Verlag, New York, 1990), p. 385.CrossRefGoogle Scholar
34.Palatnik, L. S., Il'inskii, A. I., and Sapelkin, N. P., Soviet Phys.-Solid State 8, 2016 (1967).Google Scholar