Skip to main content Accessibility help
×
Home

Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing

  • Keiichiro Oh-ishi (a1), Zenji Horita (a1), David J. Smith (a2) and Terence G. Langdon (a3)

Abstract

Samples of an Al–3% Mg alloy and an Al–3% Mg–0.2% Sc alloy were subjected to equal-channel angular pressing (ECAP) to reduce the grain size to approximately 0.2–0.3 μm. Some samples of each alloy were also annealed for 1 h at temperatures of either 423 or 673 K, respectively. High-resolution electron microscopy was used to examine the microstructure both before and after annealing. The grain boundaries after ECAP were wavy and faceted and in high-energy nonequilibrium configurations. These results were consistent with earlier observations of materials subjected to severe plastic deformation using high-pressure torsion. In addition, some grain boundaries in the Al–Mg–Sc alloy had a zigzag appearance after annealing at 673 K, where the straight portions of the boundary were identified as low-energy {111} planes. It is suggested these are mobile boundaries lying in a lowest energy configuration where mobility may be restricted by the presence of incoherent Al3Sc particles.

Copyright

References

Hide All
1.Valiev, R.Z., Islamgaliev, R.K., and Alexandrov, I.V., Prog. Mater. Sci. 45, 103 (2000).
2.Lowe, T.C. and Valiev, R.Z. (eds.), Investigations and Applications of Severe Plastic Deformation (Kluwer, Dordrecht, The Netherlands, 2000).
3.Humphreys, F.J., Prangnell, P.B., Bowen, J.R., Gholinia, A., and Harris, C., Philos. Trans. R. Soc. London, Ser. A 357, 1663 (1999).
4.Richert, J. and Richert, M., Aluminium 62, 604 (1986).
5.Lowe, T.C. and Valiev, R.Z., JOM 52 (4), 27 (2000).
6.Horita, Z., Smith, D.J., Furukawa, M., Nemoto, M., Valiev, R.Z., and Langdon, T.G., J. Mater. Res. 11, 1880 (1996).
7.Horita, Z., Smith, D.J., Nemoto, M., Valiev, R.Z., and Langdon, T.G., J. Mater. Res. 13, 446 (1998).
8.Ohishi, K., Horita, Z., Smith, D.J., Valiev, R.Z., Nemoto, M., and Langdon, T.G., J. Mater. Res. 14, 4200 (1999).
9.Berbon, P.B., Furukawa, M., Horita, Z., Nemoto, M., Tsenev, N.K., Valiev, R.Z., and Langdon, T.G., Philos. Mag. Lett. 78, 313 (1998).
10.Filatov, Yu.A., Yelagin, V.I., and Zakharov, V.V., Mater. Sci. Eng. A 280, 97 (2000).
11.Komura, S., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G., J. Mater. Res. 15, 2571 (2000).
12.Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G., Acta Mater. 45, 4733 (1997).
13.Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G., Acta Mater. 46, 3317 (1998).
14.Segal, V.M., Mater. Sci. Eng. A 197, 157 (1995).
15.Furukawa, M., Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G., Mater. Sci. Eng. A 257, 328 (1998).
16.Segal, V.M., Mater. Sci. Eng. A 271, 322 (1999).
17.Langdon, T.G., Furukawa, M., Nemoto, M., and Horita, Z., JOM 52 (4), 30 (2000).
18.Iwahashi, Y., Wang, J., Horita, Z., Nemoto, M., and Langdon, T.G., Scripta Mater. 35, 143 (1996).
19.Iwahashi, Y., Horita, Z., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 29A, 2503 (1998).
20.Berbon, P.B., Komura, S., Utsunomiya, A., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G., Mater. Trans. JIM 40, 772 (1999).
21.Ohishi, K., Horita, Z., Furukawa, M., Nemoto, M., and Langdon, T.G., Metall. Mater. Trans. 29A, 2011 (1998).
22.Ashby, M.F. and Brown, L.M., Philos. Mag. 8, 1083 (1963).

Related content

Powered by UNSILO

Grain boundary structure in Al–Mg and Al–Mg–Sc alloys after equal-channel angular pressing

  • Keiichiro Oh-ishi (a1), Zenji Horita (a1), David J. Smith (a2) and Terence G. Langdon (a3)

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed.