Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-19T15:44:30.465Z Has data issue: false hasContentIssue false

Grain boundary filmlike Fe–Mo–Cr phase in nitrogen-added type 316L stainless steels

Published online by Cambridge University Press:  31 January 2011

Yong Jun Oh
Affiliation:
Nuclear Materials Technology Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon, 305−600, Korea
Woo Seog Ryu
Affiliation:
Nuclear Materials Technology Division, Korea Atomic Energy Research Institute, P.O. Box 105, Yusong, Taejon, 305−600, Korea
Changmo Sung
Affiliation:
Center for Advanced Materials, University of Massachusetts, Lowell, Massachusetts 81854-2881
Il Hiun Kuk
Affiliation:
Center for Advanced Materials, University of Massachusetts, Lowell, Massachusetts 81854-2881
Jun Hwa Hong
Affiliation:
erials Technology Division, Korea Atomic Energy Research Institute, P.O. Box 105, usong, Taejon, 305−600, Korea
Get access

Abstract

The precipitates in nitrogen-added type 316L stainless steels (SS) were investigated by transmission electron microscopy (TEM) after thermal aging. Besides carbides (M23C6 and M6C) and intermetallic phases, an unknown phase of an Fe–Mo–Cr(–Si) system n a filmlike morphology precipitated at grain boundaries. In spite of the similarity in ts chemical composition to that of the Laves phase, the phase of the Fe–Mo–Cr(–Si) system exhibited five-, three-, and twofold symmetries, which are generally observed in quasicrystals having icosahedral symmetry. This phase was formed from the intergrowth of small crystalline clusters of the Laves phase. Decreasing the nitrogen content to that of commercial type 316L grade suppressed the formation of the filmlike fivefold phase. This was attributed to the dissipation of small Laves clusters by M23C6 carbides, which increased as a result of the decreased nitrogen content.

Type
Articles
Copyright
Copyright © Materials Research Society 1999

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

1.Weiss, B. and Stickler, R., Metall. Trans. 3, 851 (1972).CrossRefGoogle Scholar
2.Marshall, P., Austenitic Stainless Steels (Elsevier Applied Science Publishers, Essex, England, 1984), p. 23.Google Scholar
3.Lai, J. K. L., Mater. Sci. Eng. 61, 101 (1983).CrossRefGoogle Scholar
4.Bolton, C. J., Properties and Microstructures of 316 Stainless Steel (ICM3, Cambridge, 1979), p. 183.Google Scholar
5.Bruemmer, S. M., Corrosion 42, 27 (1986).CrossRefGoogle Scholar
6.Briant, C. L., Mulford, R. A., and Hall, E. L., Corrosion 38, 468 (1982).CrossRefGoogle Scholar
7.Betrabet, H.S., Nishimoto, K., Wilde, B.E., and Clark, W.A. T., Corrosion 43, 77 (1987).CrossRefGoogle Scholar
8.Bruemmer, S.M. and Atteridge, D.G., NUREG/GR-0001 (1992), p. 65.Google Scholar
9.Marshall, P., Austenitic Stainless Steels (Elsevier Applied Science Publishers, Essex, England, 1984), pp. 5152.Google Scholar
10.Thier, H., Baumel, A., and Schmidtmann, P., Arch. Eisenhuettenwesen 40, 333 (1969).Google Scholar
11.Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).CrossRefGoogle Scholar
12.Feng, J., Wang, R., and Dai, M., J. Mater. Res. 10, 2742 (1995).CrossRefGoogle Scholar
13.Shechtman, D. and Blech, I. A., Metall. Trans. 16A, 1005 (1985).CrossRefGoogle Scholar
14.Yu, D.P., Baluc, N., Staiger, W., and Kleman, M.,72, 61 (1995).Google Scholar
15.Carron, D., Chemelle, P., Michel, D., Hytch, M.J., and Portier, R., J. Non-Cryst. Solids 154, 473 (1993).CrossRefGoogle Scholar
16.Liu, P., Stigenberg, A Hultin, and Nilsson, J-O., Scripta Metall. 31, 249 (1994).CrossRefGoogle Scholar
17.Auger, P., Danoix, F., Menand, A., Bonnet, S., Bourgoin, J., and Guttmann, M., Mater. Sci. Technol. 6, 301 (1990).CrossRefGoogle Scholar
18.Sidhom, H. and Portier, R., Philos. Mag. Lett. 59 (3), 131 (1989).CrossRefGoogle Scholar
19.Reaney, I. M. and Lorimer, G.W., Philos. Mag. Lett. 57, 247 (1988).CrossRefGoogle Scholar
20.Janovec, J., Richarz, B., and Grabke, H. J., Scripta Metall. 33, 295 (1995).CrossRefGoogle Scholar
21.Kuo, K.H., Dong, C., Zhou, D.S., Guo, Y.X., Hei, Z.K., and Li, D.X., Scripta Metall. 20, 1695 (1986).CrossRefGoogle Scholar
22.Hall, E.L. and Briant, C. L., Metall. Trans. 15A, 793 (1984).CrossRefGoogle Scholar
23.Lai, J. K. L., Mater. Sci. Eng. 58, 195 (1983).CrossRefGoogle Scholar