Skip to main content Accessibility help
×
Home

Grain boundary filmlike Fe–Mo–Cr phase in nitrogen-added type 316L stainless steels

  • Yong Jun Oh (a1), Woo Seog Ryu (a1), Changmo Sung (a2), Il Hiun Kuk (a2) and Jun Hwa Hong (a3)...

Abstract

The precipitates in nitrogen-added type 316L stainless steels (SS) were investigated by transmission electron microscopy (TEM) after thermal aging. Besides carbides (M23C6 and M6C) and intermetallic phases, an unknown phase of an Fe–Mo–Cr(–Si) system n a filmlike morphology precipitated at grain boundaries. In spite of the similarity in ts chemical composition to that of the Laves phase, the phase of the Fe–Mo–Cr(–Si) system exhibited five-, three-, and twofold symmetries, which are generally observed in quasicrystals having icosahedral symmetry. This phase was formed from the intergrowth of small crystalline clusters of the Laves phase. Decreasing the nitrogen content to that of commercial type 316L grade suppressed the formation of the filmlike fivefold phase. This was attributed to the dissipation of small Laves clusters by M23C6 carbides, which increased as a result of the decreased nitrogen content.

Copyright

References

Hide All
1.Weiss, B. and Stickler, R., Metall. Trans. 3, 851 (1972).
2.Marshall, P., Austenitic Stainless Steels (Elsevier Applied Science Publishers, Essex, England, 1984), p. 23.
3.Lai, J. K. L., Mater. Sci. Eng. 61, 101 (1983).
4.Bolton, C. J., Properties and Microstructures of 316 Stainless Steel (ICM3, Cambridge, 1979), p. 183.
5.Bruemmer, S. M., Corrosion 42, 27 (1986).
6.Briant, C. L., Mulford, R. A., and Hall, E. L., Corrosion 38, 468 (1982).
7.Betrabet, H.S., Nishimoto, K., Wilde, B.E., and Clark, W.A. T., Corrosion 43, 77 (1987).
8.Bruemmer, S.M. and Atteridge, D.G., NUREG/GR-0001 (1992), p. 65.
9.Marshall, P., Austenitic Stainless Steels (Elsevier Applied Science Publishers, Essex, England, 1984), pp. 5152.
10.Thier, H., Baumel, A., and Schmidtmann, P., Arch. Eisenhuettenwesen 40, 333 (1969).
11.Shechtman, D., Blech, I., Gratias, D., and Cahn, J. W., Phys. Rev. Lett. 53, 1951 (1984).
12.Feng, J., Wang, R., and Dai, M., J. Mater. Res. 10, 2742 (1995).
13.Shechtman, D. and Blech, I. A., Metall. Trans. 16A, 1005 (1985).
14.Yu, D.P., Baluc, N., Staiger, W., and Kleman, M.,72, 61 (1995).
15.Carron, D., Chemelle, P., Michel, D., Hytch, M.J., and Portier, R., J. Non-Cryst. Solids 154, 473 (1993).
16.Liu, P., Stigenberg, A Hultin, and Nilsson, J-O., Scripta Metall. 31, 249 (1994).
17.Auger, P., Danoix, F., Menand, A., Bonnet, S., Bourgoin, J., and Guttmann, M., Mater. Sci. Technol. 6, 301 (1990).
18.Sidhom, H. and Portier, R., Philos. Mag. Lett. 59 (3), 131 (1989).
19.Reaney, I. M. and Lorimer, G.W., Philos. Mag. Lett. 57, 247 (1988).
20.Janovec, J., Richarz, B., and Grabke, H. J., Scripta Metall. 33, 295 (1995).
21.Kuo, K.H., Dong, C., Zhou, D.S., Guo, Y.X., Hei, Z.K., and Li, D.X., Scripta Metall. 20, 1695 (1986).
22.Hall, E.L. and Briant, C. L., Metall. Trans. 15A, 793 (1984).
23.Lai, J. K. L., Mater. Sci. Eng. 58, 195 (1983).

Metrics

Full text views

Total number of HTML views: 0
Total number of PDF views: 0 *
Loading metrics...

Abstract views

Total abstract views: 0 *
Loading metrics...

* Views captured on Cambridge Core between <date>. This data will be updated every 24 hours.

Usage data cannot currently be displayed